IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1387-d149587.html
   My bibliography  Save this article

Improved Genetic Algorithm-Based Unit Commitment Considering Uncertainty Integration Method

Author

Listed:
  • Kyu-Hyung Jo

    (Department of Energy System Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea)

  • Mun-Kyeom Kim

    (Department of Energy System Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea)

Abstract

In light of the dissemination of renewable energy connected to the power grid, it has become necessary to consider the uncertainty in the generation of renewable energy as a unit commitment (UC) problem. A methodology for solving the UC problem is presented by considering various uncertainties, which are assumed to have a normal distribution, by using a Monte Carlo simulation. Based on the constructed scenarios for load, wind, solar, and generator outages, a combination of scenarios is found that meets the reserve requirement to secure the power balance of the power grid. In those scenarios, the uncertainty integration method (UIM) identifies the best combination by minimizing the additional reserve requirements caused by the uncertainty of power sources. An integration process for uncertainties is formulated for stochastic unit commitment (SUC) problems and optimized by the improved genetic algorithm (IGA). The IGA is composed of five procedures and finds the optimal combination of unit status at the scheduled time, based on the determined source data. According to the number of unit systems, the IGA demonstrates better performance than the other optimization methods by applying reserve repairing and an approximation process. To account for the result of the proposed method, various UC strategies are tested with a modified 24-h UC test system and compared.

Suggested Citation

  • Kyu-Hyung Jo & Mun-Kyeom Kim, 2018. "Improved Genetic Algorithm-Based Unit Commitment Considering Uncertainty Integration Method," Energies, MDPI, vol. 11(6), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1387-:d:149587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    2. Fattahi, Salar & Ashraphijuo, Morteza & Lavaei, Javad & Atamtürk, Alper, 2017. "Conic relaxations of the unit commitment problem," Energy, Elsevier, vol. 134(C), pages 1079-1095.
    3. Chang-Gi Min & Mun-Kyeom Kim, 2017. "Net Load Carrying Capability of Generating Units in Power Systems," Energies, MDPI, vol. 10(8), pages 1-13, August.
    4. Woong Ko & Jong-Keun Park & Mun-Kyeom Kim & Jae-Haeng Heo, 2017. "A Multi-Energy System Expansion Planning Method Using a Linearized Load-Energy Curve: A Case Study in South Korea," Energies, MDPI, vol. 10(10), pages 1-24, October.
    5. Shin Young Heo & Mun Kyeom Kim & Jin Woo Choi, 2015. "Hybrid Intelligent Control Method to Improve the Frequency Support Capability of Wind Energy Conversion Systems," Energies, MDPI, vol. 8(10), pages 1-22, October.
    6. Bai, Yang & Zhong, Haiwang & Xia, Qing & Kang, Chongqing & Xie, Le, 2015. "A decomposition method for network-constrained unit commitment with AC power flow constraints," Energy, Elsevier, vol. 88(C), pages 595-603.
    7. Yu-Huei Cheng & Ching-Ming Lai, 2017. "Control Strategy Optimization for Parallel Hybrid Electric Vehicles Using a Memetic Algorithm," Energies, MDPI, vol. 10(3), pages 1-21, March.
    8. Ji, Bin & Yuan, Xiaohui & Chen, Zhihuan & Tian, Hao, 2014. "Improved gravitational search algorithm for unit commitment considering uncertainty of wind power," Energy, Elsevier, vol. 67(C), pages 52-62.
    9. Luís A. C. Roque & Dalila B. M. M. Fontes & Fernando A. C. C. Fontes, 2017. "A Metaheuristic Approach to the Multi-Objective Unit Commitment Problem Combining Economic and Environmental Criteria," Energies, MDPI, vol. 10(12), pages 1-25, December.
    10. Chandan Kishore & Smarajit Ghosh & Vinod Karar, 2018. "Symmetric Fuzzy Logic and IBFOA Solutions for Optimal Position and Rating of Capacitors Allocated to Radial Distribution Networks," Energies, MDPI, vol. 11(4), pages 1-14, March.
    11. Anand, Himanshu & Narang, Nitin & Dhillon, J.S., 2018. "Profit based unit commitment using hybrid optimization technique," Energy, Elsevier, vol. 148(C), pages 701-715.
    12. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    2. Wook-Won Kim & Jong-Keun Park & Yong-Tae Yoon & Mun-Kyeom Kim, 2018. "Transmission Expansion Planning under Uncertainty for Investment Options with Various Lead-Times," Energies, MDPI, vol. 11(9), pages 1-19, September.
    3. Walter M. Villa-Acevedo & Jesús M. López-Lezama & Jaime A. Valencia-Velásquez, 2018. "A Novel Constraint Handling Approach for the Optimal Reactive Power Dispatch Problem," Energies, MDPI, vol. 11(9), pages 1-23, September.
    4. Mohammad Dehghani & Mohammad Mardaneh & Om P. Malik & Josep M. Guerrero & Carlos Sotelo & David Sotelo & Morteza Nazari-Heris & Kamal Al-Haddad & Ricardo A. Ramirez-Mendoza, 2020. "Genetic Algorithm for Energy Commitment in a Power System Supplied by Multiple Energy Carriers," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    5. Cristian Camilo Marín-Cano & Juan Esteban Sierra-Aguilar & Jesús M. López-Lezama & Álvaro Jaramillo-Duque & Walter M. Villa-Acevedo, 2019. "Implementation of User Cuts and Linear Sensitivity Factors to Improve the Computational Performance of the Security-Constrained Unit Commitment Problem," Energies, MDPI, vol. 12(7), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    2. Zhongwen Li & Chuanzhi Zang & Peng Zeng & Haibin Yu, 2016. "Combined Two-Stage Stochastic Programming and Receding Horizon Control Strategy for Microgrid Energy Management Considering Uncertainty," Energies, MDPI, vol. 9(7), pages 1-16, June.
    3. Fazlalipour, Pary & Ehsan, Mehdi & Mohammadi-Ivatloo, Behnam, 2019. "Risk-aware stochastic bidding strategy of renewable micro-grids in day-ahead and real-time markets," Energy, Elsevier, vol. 171(C), pages 689-700.
    4. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    5. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    6. Haddadian, Hossein & Noroozian, Reza, 2017. "Multi-microgrids approach for design and operation of future distribution networks based on novel technical indices," Applied Energy, Elsevier, vol. 185(P1), pages 650-663.
    7. Whei-Min Lin & Chia-Sheng Tu & Ming-Tang Tsai, 2015. "Energy Management Strategy for Microgrids by Using Enhanced Bee Colony Optimization," Energies, MDPI, vol. 9(1), pages 1-16, December.
    8. Purkayastha, Sagar N. & Chen, Yujun & Gates, Ian D. & Trifkovic, Milana, 2020. "A kelly criterion based optimal scheduling of a microgrid on a steam-assisted gravity drainage (SAGD) facility," Energy, Elsevier, vol. 204(C).
    9. Kyu-Hyung Jo & Mun-Kyeom Kim, 2018. "Stochastic Unit Commitment Based on Multi-Scenario Tree Method Considering Uncertainty," Energies, MDPI, vol. 11(4), pages 1-17, March.
    10. Zhang, Jingrui & Tang, Qinghui & Chen, Yalin & Lin, Shuang, 2016. "A hybrid particle swarm optimization with small population size to solve the optimal short-term hydro-thermal unit commitment problem," Energy, Elsevier, vol. 109(C), pages 765-780.
    11. Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
    12. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    13. Ghatikar, Girish & Mashayekh, Salman & Stadler, Michael & Yin, Rongxin & Liu, Zhenhua, 2016. "Distributed energy systems integration and demand optimization for autonomous operations and electric grid transactions," Applied Energy, Elsevier, vol. 167(C), pages 432-448.
    14. Fattahi, Salar & Ashraphijuo, Morteza & Lavaei, Javad & Atamtürk, Alper, 2017. "Conic relaxations of the unit commitment problem," Energy, Elsevier, vol. 134(C), pages 1079-1095.
    15. Chen, Y. & Trifkovic, M., 2018. "Optimal scheduling of a microgrid in a volatile electricity market environment: Portfolio optimization approach," Applied Energy, Elsevier, vol. 226(C), pages 703-712.
    16. Li, Chaoshun & Wang, Wenxiao & Wang, Jinwen & Chen, Deshu, 2019. "Network-constrained unit commitment with RE uncertainty and PHES by using a binary artificial sheep algorithm," Energy, Elsevier, vol. 189(C).
    17. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    18. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    19. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2016. "Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties," Energies, MDPI, vol. 9(4), pages 1-21, April.
    20. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1387-:d:149587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.