IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p740-d137931.html
   My bibliography  Save this article

Stochastic Unit Commitment Based on Multi-Scenario Tree Method Considering Uncertainty

Author

Listed:
  • Kyu-Hyung Jo

    (Department of Energy System Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Korea)

  • Mun-Kyeom Kim

    (Department of Energy System Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Korea)

Abstract

With the increasing penetration of renewable energy, it is difficult to schedule unit commitment (UC) in a power system because of the uncertainty associated with various factors. In this paper, a new solution procedure based on a multi-scenario tree method (MSTM) is presented and applied to the proposed stochastic UC problem. In this process, the initial input data of load and wind power are modeled as different levels using the mean absolute percentage error (MAPE). The load and wind scenarios are generated using Monte Carlo simulation (MCS) that considers forecasting errors. These multiple scenarios are applied in the MSTM for solving the stochastic UC problem, including not only the load and wind power uncertainties, but also sudden outages of the thermal unit. When the UC problem has been formulated, the simulation is conducted for 24-h period by using the short-term UC model, and the operating costs and additional reserve requirements are thus obtained. The effectiveness of the proposed solution approach is demonstrated through a case study based on a modified IEEE-118 bus test system.

Suggested Citation

  • Kyu-Hyung Jo & Mun-Kyeom Kim, 2018. "Stochastic Unit Commitment Based on Multi-Scenario Tree Method Considering Uncertainty," Energies, MDPI, vol. 11(4), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:740-:d:137931
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/740/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/740/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed A. Tolba & Hegazy Rezk & Vladimir Tulsky & Ahmed A. Zaki Diab & Almoataz Y. Abdelaziz & Artem Vanin, 2018. "Impact of Optimum Allocation of Renewable Distributed Generations on Distribution Networks Based on Different Optimization Algorithms," Energies, MDPI, vol. 11(1), pages 1-33, January.
    2. Bai, Yang & Zhong, Haiwang & Xia, Qing & Kang, Chongqing & Xie, Le, 2015. "A decomposition method for network-constrained unit commitment with AC power flow constraints," Energy, Elsevier, vol. 88(C), pages 595-603.
    3. Hengrui Ma & Bo Wang & Wenzhong Gao & Dichen Liu & Yong Sun & Zhijun Liu, 2018. "Optimal Scheduling of an Regional Integrated Energy System with Energy Storage Systems for Service Regulation," Energies, MDPI, vol. 11(1), pages 1-19, January.
    4. Ji, Bin & Yuan, Xiaohui & Chen, Zhihuan & Tian, Hao, 2014. "Improved gravitational search algorithm for unit commitment considering uncertainty of wind power," Energy, Elsevier, vol. 67(C), pages 52-62.
    5. Kazemi, Mehdi & Siano, Pierluigi & Sarno, Debora & Goudarzi, Arman, 2016. "Evaluating the impact of sub-hourly unit commitment method on spinning reserve in presence of intermittent generators," Energy, Elsevier, vol. 113(C), pages 338-354.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianyao Zhang & Diyi Chen & Jing Liu & Beibei Xu & Venkateshkumar M, 2020. "A Feasibility Analysis of Controlling a Hybrid Power System over Short Time Intervals," Energies, MDPI, vol. 13(21), pages 1-21, October.
    2. Ho-Sung Ryu & Mun-Kyeom Kim, 2020. "Two-Stage Optimal Microgrid Operation with a Risk-Based Hybrid Demand Response Program Considering Uncertainty," Energies, MDPI, vol. 13(22), pages 1-25, November.
    3. Yong-Rae Lee & Hyung-Joon Kim & Mun-Kyeom Kim, 2021. "Optimal Operation Scheduling Considering Cycle Aging of Battery Energy Storage Systems on Stochastic Unit Commitments in Microgrids," Energies, MDPI, vol. 14(2), pages 1-21, January.
    4. Miguel Carrión & Rafael Zárate-Miñano & Ruth Domínguez, 2018. "A Practical Formulation for Ex-Ante Scheduling of Energy and Reserve in Renewable-Dominated Power Systems: Case Study of the Iberian Peninsula," Energies, MDPI, vol. 11(8), pages 1-22, July.
    5. L. Alvarado-Barrios & A. Rodríguez del Nozal & A. Tapia & J. L. Martínez-Ramos & D. G. Reina, 2019. "An Evolutionary Computational Approach for the Problem of Unit Commitment and Economic Dispatch in Microgrids under Several Operation Modes," Energies, MDPI, vol. 12(11), pages 1-23, June.
    6. Iram Parvez & Jianjian Shen & Ishitaq Hassan & Nannan Zhang, 2021. "Generation of Hydro Energy by Using Data Mining Algorithm for Cascaded Hydropower Plant," Energies, MDPI, vol. 14(2), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyu-Hyung Jo & Mun-Kyeom Kim, 2018. "Improved Genetic Algorithm-Based Unit Commitment Considering Uncertainty Integration Method," Energies, MDPI, vol. 11(6), pages 1-18, May.
    2. Zhang, Jingrui & Tang, Qinghui & Chen, Yalin & Lin, Shuang, 2016. "A hybrid particle swarm optimization with small population size to solve the optimal short-term hydro-thermal unit commitment problem," Energy, Elsevier, vol. 109(C), pages 765-780.
    3. Fattahi, Salar & Ashraphijuo, Morteza & Lavaei, Javad & Atamtürk, Alper, 2017. "Conic relaxations of the unit commitment problem," Energy, Elsevier, vol. 134(C), pages 1079-1095.
    4. Li, Chaoshun & Wang, Wenxiao & Wang, Jinwen & Chen, Deshu, 2019. "Network-constrained unit commitment with RE uncertainty and PHES by using a binary artificial sheep algorithm," Energy, Elsevier, vol. 189(C).
    5. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    6. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    9. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    10. Yuan, Xiaohui & Chen, Zhihuan & Yuan, Yanbin & Huang, Yuehua, 2015. "Design of fuzzy sliding mode controller for hydraulic turbine regulating system via input state feedback linearization method," Energy, Elsevier, vol. 93(P1), pages 173-187.
    11. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    12. Chaymae Boubii & Ismail El Kafazi & Rachid Bannari & Brahim El Bhiri & Badre Bossoufi & Hossam Kotb & Kareem M. AboRas & Ahmed Emara & Badr Nasiri, 2024. "Synergizing Wind and Solar Power: An Advanced Control System for Grid Stability," Sustainability, MDPI, vol. 16(2), pages 1-47, January.
    13. Bai, Yang & Zhong, Haiwang & Xia, Qing & Kang, Chongqing & Xie, Le, 2015. "A decomposition method for network-constrained unit commitment with AC power flow constraints," Energy, Elsevier, vol. 88(C), pages 595-603.
    14. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    15. Schulze, Tim & McKinnon, Ken, 2016. "The value of stochastic programming in day-ahead and intra-day generation unit commitment," Energy, Elsevier, vol. 101(C), pages 592-605.
    16. Wenting Zhang & Minxing Yue, 2021. "The application of building energy management system based on IoT technology in smart city," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(4), pages 617-628, August.
    17. Yi, Liqi & Li, Tao & Zhang, Ting, 2021. "Optimal investment selection of regional integrated energy system under multiple strategic objectives portfolio," Energy, Elsevier, vol. 218(C).
    18. Goudarzi, Arman & Swanson, Andrew G. & Van Coller, John & Siano, Pierluigi, 2017. "Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators," Applied Energy, Elsevier, vol. 189(C), pages 667-696.
    19. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    20. Min Xie & Yuxin Du & Peijun Cheng & Wei Wei & Mingbo Liu, 2019. "A Cross-Entropy-Based Hybrid Membrane Computing Method for Power System Unit Commitment Problems," Energies, MDPI, vol. 12(3), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:740-:d:137931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.