IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1663-d115845.html
   My bibliography  Save this article

A Multi-Energy System Expansion Planning Method Using a Linearized Load-Energy Curve: A Case Study in South Korea

Author

Listed:
  • Woong Ko

    (School of Electrical Engineering & Computer Science, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea)

  • Jong-Keun Park

    (School of Electrical Engineering & Computer Science, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea)

  • Mun-Kyeom Kim

    (Department of Energy System Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea)

  • Jae-Haeng Heo

    (Research and Development Laboratory, Raonfreinds, 23, 16 Cheomdanbencheo-ro, Buk-gu, Gwangju 61009, Korea)

Abstract

Multi-energy systems can integrate heat and electrical energy efficiently, using resources such as cogeneration. In order to meet energy demand cost-effectively in a multi-energy system, adopting appropriate energy resources at the right time is of great importance. In this paper, we propose an expansion planning method for a multi-energy system that supplies heat and electrical energy. The proposed approach formulates expansion planning as a mixed integer linear programming (MILP) problem. The objective is to minimize the sum of the annualized cost of the multi-energy system. The candidate resources that constitute the cost of the multi-energy system are fuel-based power generators, heat-only boilers, a combined heat and power (CHP) unit, energy storage resources, and a renewable electrical power source. We use a load-energy curve, instead of a load-duration curve, for constructing the optimization model, which is subsequently linearized using a Douglas-Peucker algorithm. The residual load-energy curve, for utilizing the renewable electrical power source, is also linearized. This study demonstrates the effectiveness of the proposed method through a comparison with a conventional linearization method. In addition, we evaluate the cost and planning schedules of different case studies, according to the configuration of resources in the multi-energy system.

Suggested Citation

  • Woong Ko & Jong-Keun Park & Mun-Kyeom Kim & Jae-Haeng Heo, 2017. "A Multi-Energy System Expansion Planning Method Using a Linearized Load-Energy Curve: A Case Study in South Korea," Energies, MDPI, vol. 10(10), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1663-:d:115845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1663/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1663/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    2. Xianzheng Zhou & Chuangxin Guo & Yifei Wang & Wanqi Li, 2017. "Optimal Expansion Co-Planning of Reconfigurable Electricity and Natural Gas Distribution Systems Incorporating Energy Hubs," Energies, MDPI, vol. 10(1), pages 1-22, January.
    3. Mojica, Jose L. & Petersen, Damon & Hansen, Brigham & Powell, Kody M. & Hedengren, John D., 2017. "Optimal combined long-term facility design and short-term operational strategy for CHP capacity investments," Energy, Elsevier, vol. 118(C), pages 97-115.
    4. Park, Eunil & Kwon, Sang Jib, 2016. "Solutions for optimizing renewable power generation systems at Kyung-Hee University׳s Global Campus, South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 439-449.
    5. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    6. Chaudry, Modassar & Jenkins, Nick & Qadrdan, Meysam & Wu, Jianzhong, 2014. "Combined gas and electricity network expansion planning," Applied Energy, Elsevier, vol. 113(C), pages 1171-1187.
    7. Jeroen Vandewalle & Nico Keyaerts & William D'haeseleer, 2012. "The Role of Thermal Storage and Natural Gas in a Smart Energy System," RSCAS Working Papers 2012/48, European University Institute.
    8. Davide Borelli & Francesco Devia & Ermanno Lo Cascio & Corrado Schenone & Alessandro Spoladore, 2016. "Combined Production and Conversion of Energy in an Urban Integrated System," Energies, MDPI, vol. 9(10), pages 1-17, October.
    9. Moradi, Mohammad H. & Hajinazari, Mehdi & Jamasb, Shahriar & Paripour, Mahmoud, 2013. "An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming," Energy, Elsevier, vol. 49(C), pages 86-101.
    10. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vincent, Immanuel & Lee, Eun-Chong & Cha, Kyung-Ho & Kim, Hyung-Man, 2021. "The WASP model on the symbiotic strategy of renewable and nuclear power for the future of ‘Renewable Energy 3020’ policy in South Korea," Renewable Energy, Elsevier, vol. 172(C), pages 929-940.
    2. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    3. Rigo-Mariani, Rémy, 2022. "Optimized time reduction models applied to power and energy systems planning – Comparison with existing methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Woong Ko & Jinho Kim, 2019. "Generation Expansion Planning Model for Integrated Energy System Considering Feasible Operation Region and Generation Efficiency of Combined Heat and Power," Energies, MDPI, vol. 12(2), pages 1-20, January.
    5. Jaber Valinejad & Mousa Marzband & Mudathir Funsho Akorede & Ian D Elliott & Radu Godina & João Carlos de Oliveira Matias & Edris Pouresmaeil, 2018. "Long-Term Decision on Wind Investment with Considering Different Load Ranges of Power Plant for Sustainable Electricity Energy Market," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    6. Kyu-Hyung Jo & Mun-Kyeom Kim, 2018. "Improved Genetic Algorithm-Based Unit Commitment Considering Uncertainty Integration Method," Energies, MDPI, vol. 11(6), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oduro, Richard A. & Taylor, Peter G., 2023. "Future pathways for energy networks: A review of international experiences in high income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Woong Ko & Jinho Kim, 2019. "Generation Expansion Planning Model for Integrated Energy System Considering Feasible Operation Region and Generation Efficiency of Combined Heat and Power," Energies, MDPI, vol. 12(2), pages 1-20, January.
    3. Yi, Ji Hyun & Ko, Woong & Park, Jong-Keun & Park, Hyeongon, 2018. "Impact of carbon emission constraint on design of small scale multi-energy system," Energy, Elsevier, vol. 161(C), pages 792-808.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    6. Cheng, Yaohua & Zhang, Ning & Kirschen, Daniel S. & Huang, Wujing & Kang, Chongqing, 2020. "Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China," Applied Energy, Elsevier, vol. 261(C).
    7. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    8. Li, Qiang & Gao, Mengkai & Lin, Houfei & Chen, Ziyu & Chen, Minyou, 2019. "MAS-based distributed control method for multi-microgrids with high-penetration renewable energy," Energy, Elsevier, vol. 171(C), pages 284-295.
    9. Lombardi, Francesco & Balderrama, Sergio & Quoilin, Sylvain & Colombo, Emanuela, 2019. "Generating high-resolution multi-energy load profiles for remote areas with an open-source stochastic model," Energy, Elsevier, vol. 177(C), pages 433-444.
    10. Patrick Sunday Onen & Geev Mokryani & Rana H. A. Zubo, 2022. "Planning of Multi-Vector Energy Systems with High Penetration of Renewable Energy Source: A Comprehensive Review," Energies, MDPI, vol. 15(15), pages 1-25, August.
    11. Els van der Roest & Theo Fens & Martin Bloemendal & Stijn Beernink & Jan Peter van der Hoek & Ad J. M. van Wijk, 2021. "The Impact of System Integration on System Costs of a Neighborhood Energy and Water System," Energies, MDPI, vol. 14(9), pages 1-33, May.
    12. Jasmine Ramsebner & Reinhard Haas & Amela Ajanovic & Martin Wietschel, 2021. "The sector coupling concept: A critical review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    13. Marco Badami & Gabriele Fambri & Salvatore Mancò & Mariapia Martino & Ioannis G. Damousis & Dimitrios Agtzidis & Dimitrios Tzovaras, 2019. "A Decision Support System Tool to Manage the Flexibility in Renewable Energy-Based Power Systems," Energies, MDPI, vol. 13(1), pages 1-16, December.
    14. Daniel Then & Patrick Hein & Tanja M. Kneiske & Martin Braun, 2020. "Analysis of Dependencies between Gas and Electricity Distribution Grid Planning and Building Energy Retrofit Decisions," Sustainability, MDPI, vol. 12(13), pages 1-42, July.
    15. Simone Ferrari & Federica Zagarella & Paola Caputo & Giuliano Dall’O’, 2021. "A GIS-Based Procedure for Estimating the Energy Demand Profiles of Buildings towards Urban Energy Policies," Energies, MDPI, vol. 14(17), pages 1-16, September.
    16. David Grosspietsch & Marissa Saenger & Bastien Girod, 2019. "Matching decentralized energy production and local consumption: A review of renewable energy systems with conversion and storage technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(4), July.
    17. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    18. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    20. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1663-:d:115845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.