IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1361-d149213.html
   My bibliography  Save this article

Overview of Electric Field Applications in Energy and Process Engineering

Author

Listed:
  • Lars Zigan

    (Lehrstuhl für Technische Thermodynamik (LTT) and Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91058 Erlangen, Germany)

Abstract

Heat and mass transfer as well as chemical reactions in technical processes can be enhanced by using electric fields. This paper provides an overview of current fundamental and applied research as well as potential technical applications of electric fields in energy and process engineering. This includes electrosprays, technical combustors as well as electrochemical reforming and plasma gasification of waste or biomass. Other emerging fields are plasma technologies for treatment of water, surfaces and gases including flue gases. In particle or aerosol-laden flows, plasmas are used to promote particle nucleation and surface growth for controlled nanomaterial synthesis. Furthermore, non-invasive diagnostics based on electromagnetic fields and electric fluid properties are relevant techniques for online control and optimization of technical processes. Finally, an overview of laser-based techniques is provided for studying electro-hydrodynamic effects, temperature, and species concentrations in plasma and electric-field enhanced processes.

Suggested Citation

  • Lars Zigan, 2018. "Overview of Electric Field Applications in Energy and Process Engineering," Energies, MDPI, vol. 11(6), pages 1-33, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1361-:d:149213
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1361/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1361/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Poškas, Robertas & Sirvydas, Arūnas & Poškas, Povilas & Jouhara, Hussam & Striūgas, Nerijus & Pedišius, Nerijus & Valinčius, Vitas, 2018. "Investigation of warm gas clean-up of biofuel flue and producer gas using electrostatic precipitator," Energy, Elsevier, vol. 143(C), pages 943-949.
    2. Ma, Siming & Zhao, Yongchun & Yang, Jianping & Zhang, Shibo & Zhang, Junying & Zheng, Chuguang, 2017. "Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 791-810.
    3. Hong, Yong C. & Lee, Sang J. & Shin, Dong H. & Kim, Ye J. & Lee, Bong J. & Cho, Seong Y. & Chang, Han S., 2012. "Syngas production from gasification of brown coal in a microwave torch plasma," Energy, Elsevier, vol. 47(1), pages 36-40.
    4. Crespo, Bárbara & Patiño, David & Regueiro, Araceli & Granada, Enrique, 2016. "Performance of a lab-scale tubular-type electrostatic precipitator using a diesel engine particle emission source," Energy, Elsevier, vol. 116(P3), pages 1444-1453.
    5. Malte Mallach & Martin Gevers & Patrik Gebhardt & Thomas Musch, 2018. "Fast and Precise Soft-Field Electromagnetic Tomography Systems for Multiphase Flow Imaging," Energies, MDPI, vol. 11(5), pages 1-17, May.
    6. Koegl, M. & Hofbeck, B. & Will, S. & Zigan, L., 2018. "Investigation of soot formation and oxidation of ethanol and butanol fuel blends in a DISI engine at different exhaust gas recirculation rates," Applied Energy, Elsevier, vol. 209(C), pages 426-434.
    7. Hossam A. Gabbar & Mohamed Aboughaly & C.A. Barry Stoute, 2017. "DC Thermal Plasma Design and Utilization for the Low Density Polyethylene to Diesel Oil Pyrolysis Reaction," Energies, MDPI, vol. 10(6), pages 1-15, June.
    8. Storch, Michael & Hinrichsen, Florian & Wensing, Michael & Will, Stefan & Zigan, Lars, 2015. "The effect of ethanol blending on mixture formation, combustion and soot emission studied in an optical DISI engine," Applied Energy, Elsevier, vol. 156(C), pages 783-792.
    9. Jingguo Qu & Lingjian Kong & Jianfei Zhang, 2018. "Experimental Investigation on Flow and Heat Transfer Characteristics of a Needle-Cylinder Type Ionic Wind Generator for LED Cooling," Energies, MDPI, vol. 11(5), pages 1-15, May.
    10. Jianfeng Fang & Xiaomin Wu & Hao Duan & Chao Li & Zhongquan Gao, 2015. "Effects of Electric Fields on the Combustion Characteristics of Lean Burn Methane-Air Mixtures," Energies, MDPI, vol. 8(4), pages 1-19, March.
    11. Chao Li & Xiaomin Wu & Yiming Li & Juncai Hou, 2016. "Deformation Study of Lean Methane-Air Premixed Spherically Expanding Flames under a Negative Direct Current Electric Field," Energies, MDPI, vol. 9(9), pages 1-15, September.
    12. Vojislav Jovicic & Muhammad Jehanzaib Khan & Ana Zbogar-Rasic & Nataliia Fedorova & Alexander Poser & Peter Swoboda & Antonio Delgado, 2018. "Degradation of Low Concentrated Perfluorinated Compounds (PFCs) from Water Samples Using Non-Thermal Atmospheric Plasma (NTAP)," Energies, MDPI, vol. 11(5), pages 1-14, May.
    13. Yin Pang & Leo Bahr & Peter Fendt & Lars Zigan & Stefan Will & Thomas Hammer & Manfred Baldauf & Robert Fleck & Dominik Müller & Jürgen Karl, 2018. "Plasma-Assisted Biomass Gasification with Focus on Carbon Conversion and Reaction Kinetics Compared to Thermal Gasification," Energies, MDPI, vol. 11(5), pages 1-24, May.
    14. Yu-Chien Chien & Derek Dunn-Rankin, 2018. "Electric Field Induced Changes of a Diffusion Flame and Heat Transfer near an Impinging Surface," Energies, MDPI, vol. 11(5), pages 1-13, May.
    15. Talebizadeh, P. & Babaie, M. & Brown, R. & Rahimzadeh, H. & Ristovski, Z. & Arai, M., 2014. "The role of non-thermal plasma technique in NOx treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 886-901.
    16. Thomas Hermans & Frédéric Nguyen & Tanguy Robert & Andre Revil, 2014. "Geophysical Methods for Monitoring Temperature Changes in Shallow Low Enthalpy Geothermal Systems," Energies, MDPI, vol. 7(8), pages 1-36, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tadeusz Mączka & Halina Pawlak-Kruczek & Lukasz Niedzwiecki & Edward Ziaja & Artur Chorążyczewski, 2020. "Plasma Assisted Combustion as a Cost-Effective Way for Balancing of Intermittent Sources: Techno-Economic Assessment for 200 MW el Power Unit," Energies, MDPI, vol. 13(19), pages 1-16, September.
    2. Lars Zigan, 2018. "Electric Fields in Energy and Process Engineering," Energies, MDPI, vol. 11(9), pages 1-4, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lars Zigan, 2018. "Electric Fields in Energy and Process Engineering," Energies, MDPI, vol. 11(9), pages 1-4, August.
    2. Sang-Min Kim & Kyeong-Soo Han & Seung-Wook Baek, 2021. "Influence of DC Electric Field on the Propane-Air Diffusion Flames and NO x Formation," Energies, MDPI, vol. 14(18), pages 1-13, September.
    3. Qian, Yong & Li, Zilong & Yu, Liang & Wang, Xiaole & Lu, Xingcai, 2019. "Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines," Applied Energy, Elsevier, vol. 238(C), pages 1269-1298.
    4. Mar Cogollo de Cádiz & Pedro Martí Balsalobre & Andrés Díaz Lantada, 2022. "Research on Wire-to-Two Fin Configuration for Positive Atmospheric Plasma by Electrokinetic Blower," Energies, MDPI, vol. 15(15), pages 1-15, July.
    5. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    6. Ali Elkamel, 2018. "Energy Production Systems," Energies, MDPI, vol. 11(10), pages 1-4, September.
    7. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Nabi, M.N. & Rasul, M.G. & Rahman, S.M.A. & Dowell, Ashley & Ristovski, Z.D. & Brown, R.J., 2019. "Study of performance, combustion and emission characteristics of a common rail diesel engine with tea tree oil-diglyme blends," Energy, Elsevier, vol. 180(C), pages 216-228.
    9. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    10. Owen Sedej & Eric Mbonimpa & Trevor Sleight & Jeremy Slagley, 2022. "Application of Machine Learning to Predict the Performance of an EMIPG Reactor Using Data from Numerical Simulations," Energies, MDPI, vol. 15(7), pages 1-22, March.
    11. Andrius Tamošiūnas & Ajmia Chouchène & Pranas Valatkevičius & Dovilė Gimžauskaitė & Mindaugas Aikas & Rolandas Uscila & Makrem Ghorbel & Mejdi Jeguirim, 2017. "The Potential of Thermal Plasma Gasification of Olive Pomace Charcoal," Energies, MDPI, vol. 10(5), pages 1-14, May.
    12. Lee, Ziyoung & Park, Sungwook, 2020. "Particulate and gaseous emissions from a direct-injection spark ignition engine fueled with bioethanol and gasoline blends at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 149(C), pages 80-90.
    13. Li, Yan & Feng, Yanhui & Zhang, Xinxin & Wu, Chuansong, 2014. "Energy propagation in plasma arc welding with keyhole tracking," Energy, Elsevier, vol. 64(C), pages 1044-1056.
    14. Sharma, Ajay & Aravind Kumar, A. & Mohanty, Bikash & Sawarkar, Ashish N., 2023. "Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis," Renewable Energy, Elsevier, vol. 210(C), pages 321-334.
    15. Hans Schwarz & Borja Badenes & Jan Wagner & José Manuel Cuevas & Javier Urchueguía & David Bertermann, 2021. "A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method," Energies, MDPI, vol. 14(9), pages 1-17, May.
    16. Duan, Jiaqi & Ying, Yaoyao & Liu, Dong, 2019. "Novel nanoscale control on soot formation by local CO2 micro-injection in ethylene inverse diffusion flames," Energy, Elsevier, vol. 179(C), pages 697-708.
    17. Daniilidis, Alexandros & Herber, Rien, 2017. "Salt intrusions providing a new geothermal exploration target for higher energy recovery at shallower depths," Energy, Elsevier, vol. 118(C), pages 658-670.
    18. Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Jaworek, A. & Sobczyk, A.T. & Marchewicz, A. & Krupa, A. & Czech, T., 2021. "Particulate matter emission control from small residential boilers after biomass combustion. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Tungalag, Azjargal & Lee, BongJu & Yadav, Manoj & Akande, Olugbenga, 2020. "Yield prediction of MSW gasification including minor species through ASPEN plus simulation," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1361-:d:149213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.