IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1235-d145979.html
   My bibliography  Save this article

Electric Field Induced Changes of a Diffusion Flame and Heat Transfer near an Impinging Surface

Author

Listed:
  • Yu-Chien Chien

    (Mechanical and Aerospace Engineering Department, University of California, Irvine, CA 92697, USA)

  • Derek Dunn-Rankin

    (Mechanical and Aerospace Engineering Department, University of California, Irvine, CA 92697, USA)

Abstract

This research investigates heat transfer phenomena on a plate used with impinging electric field flames; i.e., flames burning in the presence of an electric field. Electric field effects on flames have been investigated in different applications but not when the flames are impinging on nearby surfaces. Challenges to measurement methods when an electric field is applied in the system have limited the understanding of changes to the temperature distributions and species concentrations caused by the field. This study uses an infrared forward looking infrared (FLIR) camera with Schlieren visualization to examine the heat flux from flames over an impinging plate with different electric fields applied. In particular, we study the electric field effects on flames when those flames transfer heat to a nearby plate, and then how that transfer can be controlled using the electric field. The results show that electric fields affect substantially the heat flux distribution through the ion-driven wind, particularly when the plate location is just above the flame tip.

Suggested Citation

  • Yu-Chien Chien & Derek Dunn-Rankin, 2018. "Electric Field Induced Changes of a Diffusion Flame and Heat Transfer near an Impinging Surface," Energies, MDPI, vol. 11(5), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1235-:d:145979
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1235/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Grazia De Giorgi & Antonio Ficarella & Donato Fontanarosa & Elisa Pescini & Antonio Suma, 2020. "Investigation of the Effects of Plasma Discharges on Methane Decomposition for Combustion Enhancement of a Lean Flame," Energies, MDPI, vol. 13(6), pages 1-19, March.
    2. Lars Zigan, 2018. "Electric Fields in Energy and Process Engineering," Energies, MDPI, vol. 11(9), pages 1-4, August.
    3. Lars Zigan, 2018. "Overview of Electric Field Applications in Energy and Process Engineering," Energies, MDPI, vol. 11(6), pages 1-33, May.
    4. Sang-Min Kim & Kyeong-Soo Han & Seung-Wook Baek, 2021. "Influence of DC Electric Field on the Propane-Air Diffusion Flames and NO x Formation," Energies, MDPI, vol. 14(18), pages 1-13, September.
    5. Vadim Lemanov & Vladimir Lukashov & Konstantin Sharov, 2022. "Hydrogen Vortex Flow Impact on the Catalytic Wall," Energies, MDPI, vol. 16(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1235-:d:145979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.