IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v67y2017icp791-810.html
   My bibliography  Save this article

Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma

Author

Listed:
  • Ma, Siming
  • Zhao, Yongchun
  • Yang, Jianping
  • Zhang, Shibo
  • Zhang, Junying
  • Zheng, Chuguang

Abstract

Simultaneous removal of multi-pollutants from coal-fired power plants has drawn worldwide attention in recent years. Non-thermal plasma (NTP) flue gas cleaning technologies show good performance on SO2, NOX, and Hg0 removal and extensive studies have been carried out. This paper reviews the research progress of pollutants removal from coal-fired flue gas using non-thermal plasma. The pollutants removal mechanisms of NTP are briefly described at first. The structure features and parameter characteristics of various NTP reactors are also summarized in this paper. The experimental results of different NTP technologies such as electron beam (EB) irradiation, corona discharge, dielectric barrier discharge (DBD) are reviewed systematically and the effects of flue gas components (O2, H2O, HCl, NH3, SO2, NO, Hg0, etc) and oxidation approach on the removal of SO2, NOX, and Hg0 are discussed comprehensively and systematically. Moreover, the NTP-chemical absorption/catalyst hybrid systems for pollutants removal are involved in this paper as well. The pilot/large-scale demonstration projects of NTP technologies around the world are also summarized in this paper and the development of NTP flue gas cleaning technologies in the future are discussed as well.

Suggested Citation

  • Ma, Siming & Zhao, Yongchun & Yang, Jianping & Zhang, Shibo & Zhang, Junying & Zheng, Chuguang, 2017. "Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 791-810.
  • Handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:791-810
    DOI: 10.1016/j.rser.2016.09.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116305457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.09.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Licki, J. & Chmielewski, A. G. & Iller, E. & Zimek, Z. & Mazurek, J. & Sobolewski, L., 2003. "Electron-beam flue-gas treatment for multicomponent air-pollution control," Applied Energy, Elsevier, vol. 75(3-4), pages 145-154, July.
    2. You, C.F. & Xu, X.C., 2010. "Coal combustion and its pollution control in China," Energy, Elsevier, vol. 35(11), pages 4467-4472.
    3. Talebizadeh, P. & Babaie, M. & Brown, R. & Rahimzadeh, H. & Ristovski, Z. & Arai, M., 2014. "The role of non-thermal plasma technique in NOx treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 886-901.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lars Zigan, 2018. "Overview of Electric Field Applications in Energy and Process Engineering," Energies, MDPI, vol. 11(6), pages 1-33, May.
    2. Ping Fang & Zijun Tang & Xiongbo Chen & Peiyi Zhong & Jianhang Huang & Zhixiong Tang & Chaoping Cen, 2018. "Simultaneous Removal of NO x and SO 2 through a Simple Process Using a Composite Absorbent," Sustainability, MDPI, vol. 10(12), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Yijie & Ma, Xiaotian & Gao, Feng & Zhang, Tianzuo & Hong, Jinglan & Zhang, Xu & Yuan, Xueliang & Li, Xiangzhi, 2020. "Is energy the key to pursuing clean air and water at the city level? A case study of Jinan City, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Wang, Qingxiang & Chen, Zhichao & Han, Hui & Zeng, Lingyan & Li, Zhengqi, 2019. "Experimental characterization of anthracite combustion and NOx emission for a 300-MWe down-fired boiler with a novel combustion system: Influence of primary and vent air distributions," Applied Energy, Elsevier, vol. 238(C), pages 1551-1562.
    3. Chow, Sheung Chi & Wenjing, Xu & Xiaoyang, Wu, 2014. "Efficiency of electricity use and productivity change of electricity in China: A nonparametric approach," MPRA Paper 62972, University Library of Munich, Germany.
    4. Huang, Zhian & Yu, Rongxia & Ding, Hao & Wang, Hongsheng & Quan, Sainan & Song, Donghong & Lei, Yukun & Gao, Yukun & Zhang, Yinghua & Wang, Pengfei, 2023. "Preparation and properties of tea polyphenol nanofoamed gel for preventing coal spontaneous combustion," Energy, Elsevier, vol. 284(C).
    5. Yimin Deng & Renaud Ansart & Jan Baeyens & Huili Zhang, 2019. "Flue Gas Desulphurization in Circulating Fluidized Beds," Energies, MDPI, vol. 12(20), pages 1-19, October.
    6. Shahaboddin Shamshirband & Masoud Hadipoor & Alireza Baghban & Amir Mosavi & Jozsef Bukor & Annamária R. Várkonyi-Kóczy, 2019. "Developing an ANFIS-PSO Model to Predict Mercury Emissions in Combustion Flue Gases," Mathematics, MDPI, vol. 7(10), pages 1-16, October.
    7. Wang, Qingxiang & Chen, Zhichao & Wang, Liang & Zeng, Lingyan & Li, Zhengqi, 2018. "Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners," Applied Energy, Elsevier, vol. 223(C), pages 358-368.
    8. Hidemichi Fujii & Jing Cao & Shunsuke Managi, 2015. "Decomposition of Productivity Considering Multi-environmental Pollutants in Chinese Industrial Sector," Review of Development Economics, Wiley Blackwell, vol. 19(1), pages 75-84, February.
    9. Julien Chevallier, 2013. "At the crossroads: can China grow in a low-carbon way?," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 31, pages 666-681, Edward Elgar Publishing.
    10. Sarvestani, Nasrin Sabet & Tabasizadeh, Mohammad & Abbaspour Fard, Mohammad Hossein & Nayebzadeh, Hamed & Van, Thuy Chu & Jafari, Mohammad & Bodisco, Timothy A. & Ristovski, Zoran & Brown, Richard J., 2021. "Effects of enhanced fuel with Mg-doped Fe3O4 nanoparticles on combustion of a compression ignition engine: Influence of Mg cation concentration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Wu, Chia-Ming & Hu, Jin-Li, 2019. "Can CSR reduce stock price crash risk? Evidence from China's energy industry," Energy Policy, Elsevier, vol. 128(C), pages 505-518.
    12. Sivek, Martin & Jirásek, Jakub & Kavina, Pavel & Vojnarová, Markéta & Kurková, Tereza & Bašová, Andrea, 2020. "Divorce after hundreds of years of marriage: Prospects for coal mining in the Czech Republic with regard to the European Union," Energy Policy, Elsevier, vol. 142(C).
    13. Zhao, Yi & Wang, Shuqin & Shen, Yanmei & Lu, Xiaojuan, 2013. "Effects of nano-TiO2 on combustion and desulfurization," Energy, Elsevier, vol. 56(C), pages 25-30.
    14. Lars Zigan, 2018. "Overview of Electric Field Applications in Energy and Process Engineering," Energies, MDPI, vol. 11(6), pages 1-33, May.
    15. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
    16. Qiao, Yanyu & Li, Song & Jing, Xinjing & Chen, Zhichao & Fan, Subo & Li, Zhengqi, 2022. "Combustion and NOx formation characteristics from a 330 MWe retrofitted anthracite-fired utility boiler with swirl burner under deeply-staged-combustion," Energy, Elsevier, vol. 258(C).
    17. Ren, Feng & Li, Zhengqi & Liu, Guangkui & Chen, Zhichao & Zhu, Qunyi, 2011. "Combustion and NOx emissions characteristics of a down-fired 660-MWe utility boiler retro-fitted with air-surrounding-fuel concept," Energy, Elsevier, vol. 36(1), pages 70-77.
    18. Sun, Zhongwei & Wang, Shengwei & Zhou, Qulan & Hui, Shi'en, 2010. "Experimental study on desulfurization efficiency and gas-liquid mass transfer in a new liquid-screen desulfurization system," Applied Energy, Elsevier, vol. 87(5), pages 1505-1512, May.
    19. Xiaoli Wu & Yaoyao Qin & Qizhuo Xie & Yunyi Zhang, 2022. "The Mediating and Moderating Effects of the Digital Economy on PM 2.5 : Evidence from China," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    20. Zhang, Qijun & Dong, Jianning & Chen, Heng & Feng, Fuyuan & Xu, Gang & Wang, Xiuyan & Liu, Tong, 2024. "Dynamic characteristics and economic analysis of a coal-fired power plant integrated with molten salt thermal energy storage for improving peaking capacity," Energy, Elsevier, vol. 290(C).

    More about this item

    Keywords

    Non-thermal plasma (NTP); Coal-fired flue gas; SO2; NOX; Hg0; Removal;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:67:y:2017:i:c:p:791-810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.