IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp1589-1597.html
   My bibliography  Save this article

Quantifying the effect of vortex generator installation on wind power production: An academia-industry case study

Author

Listed:
  • Hwangbo, Hoon
  • Ding, Yu
  • Eisele, Oliver
  • Weinzierl, Guido
  • Lang, Ulrich
  • Pechlivanoglou, Georgios

Abstract

This paper presents an academia-industry joint study concerning effective methods to estimate and quantify the effect of vortex generator installation on wind power production. This problem has presented a challenge to the wind industry, because (a) vortex generator installation may lead to a moderate 1–5% extra power production, but this level of improvement is difficult to be accurately detected; and (b) it is equally difficult to validate the estimated effect of vortex generator installation because a controlled experiment is practically impossible to conduct to provide a credible baseline. An academic institute and a wind technology company team up to tackle this challenge. The two teams develop their own version of quantification methods, which are profoundly different. The academic method uses 10-min data and makes use of both power and environmental data, whereas the company method uses high-frequency data via primarily a direct power comparison approach that relies less on the environmental data. When applying the respective methods to two inland wind farms, each of which presents four pairs of turbines, the quantification results from the two methods are surprisingly consistent. We believe the consistent outcome presents a strong case of cross validation, testifying to the respective method's capability and credibility.

Suggested Citation

  • Hwangbo, Hoon & Ding, Yu & Eisele, Oliver & Weinzierl, Guido & Lang, Ulrich & Pechlivanoglou, Georgios, 2017. "Quantifying the effect of vortex generator installation on wind power production: An academia-industry case study," Renewable Energy, Elsevier, vol. 113(C), pages 1589-1597.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1589-1597
    DOI: 10.1016/j.renene.2017.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117306213
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giwhyun Lee & Yu Ding & Marc G. Genton & Le Xie, 2015. "Power Curve Estimation With Multivariate Environmental Factors for Inland and Offshore Wind Farms," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 56-67, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gorle, J.M.R. & Chatellier, L. & Pons, F. & Ba, M., 2019. "Modulated circulation control around the blades of a vertical axis hydrokinetic turbine for flow control and improved performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 363-377.
    2. Ding, Yu & Kumar, Nitesh & Prakash, Abhinav & Kio, Adaiyibo E. & Liu, Xin & Liu, Lei & Li, Qingchang, 2021. "A case study of space-time performance comparison of wind turbines on a wind farm," Renewable Energy, Elsevier, vol. 171(C), pages 735-746.
    3. Fatehi, Mostafa & Nili-Ahmadabadi, Mahdi & Nematollahi, Omid & Minaiean, Ali & Kim, Kyung Chun, 2019. "Aerodynamic performance improvement of wind turbine blade by cavity shape optimization," Renewable Energy, Elsevier, vol. 132(C), pages 773-785.
    4. Unai Fernandez-Gamiz & Macarena Gomez-Mármol & Tomas Chacón-Rebollo, 2018. "Computational Modeling of Gurney Flaps and Microtabs by POD Method," Energies, MDPI, vol. 11(8), pages 1-19, August.
    5. Raymond Byrne & Davide Astolfi & Francesco Castellani & Neil J. Hewitt, 2020. "A Study of Wind Turbine Performance Decline with Age through Operation Data Analysis," Energies, MDPI, vol. 13(8), pages 1-18, April.
    6. Aitor Saenz-Aguirre & Unai Fernandez-Gamiz & Ekaitz Zulueta & Alain Ulazia & Jon Martinez-Rico, 2019. "Optimal Wind Turbine Operation by Artificial Neural Network-Based Active Gurney Flap Flow Control," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    7. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2020. "Analysis of Wind Turbine Aging through Operation Curves," Energies, MDPI, vol. 13(21), pages 1-21, October.
    8. Moon, Hyeongi & Jeong, Junhee & Park, Sunho & Ha, Kwangtae & Jeong, Jae-Ho, 2023. "Numerical and experimental validation of vortex generator effect on power performance improvement in MW-class wind turbine blade," Renewable Energy, Elsevier, vol. 212(C), pages 443-454.
    9. Davide Astolfi & Francesco Castellani & Ludovico Terzi, 2018. "Wind Turbine Power Curve Upgrades," Energies, MDPI, vol. 11(5), pages 1-17, May.
    10. Davide Astolfi & Francesco Castellani, 2019. "Wind Turbine Power Curve Upgrades: Part II," Energies, MDPI, vol. 12(8), pages 1-20, April.
    11. Zaki, Abanoub & Abdelrahman, M.A. & Ayad, Samir S. & Abdellatif, O.E., 2022. "Effects of leading edge slat on the aerodynamic performance of low Reynolds number horizontal axis wind turbine," Energy, Elsevier, vol. 239(PD).
    12. Davide Astolfi & Francesco Castellani & Matteo Becchetti & Andrea Lombardi & Ludovico Terzi, 2020. "Wind Turbine Systematic Yaw Error: Operation Data Analysis Techniques for Detecting It and Assessing Its Performance Impact," Energies, MDPI, vol. 13(9), pages 1-17, May.
    13. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    14. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    15. Manolesos, M. & Chng, L. & Kaufmann, N. & Ouro, P. & Ntouras, D. & Papadakis, G., 2023. "Using vortex generators for flow separation control on tidal turbine profiles and blades," Renewable Energy, Elsevier, vol. 205(C), pages 1025-1039.
    16. Qiao, Yanhui & Han, Shuang & Zhang, Yajie & Liu, Yongqian & Yan, Jie, 2024. "A multivariable wind turbine power curve modeling method considering segment control differences and short-time self-dependence," Renewable Energy, Elsevier, vol. 222(C).
    17. Francesco Castellani & Ravi Pandit & Francesco Natili & Francesca Belcastro & Davide Astolfi, 2023. "Advanced Methods for Wind Turbine Performance Analysis Based on SCADA Data and CFD Simulations," Energies, MDPI, vol. 16(3), pages 1-15, January.
    18. Zhu, Haitian & Hao, Wenxing & Li, Chun & Ding, Qinwei & Wu, Baihui, 2018. "A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 165(PA), pages 12-25.
    19. Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giani, Paolo & Tagle, Felipe & Genton, Marc G. & Castruccio, Stefano & Crippa, Paola, 2020. "Closing the gap between wind energy targets and implementation for emerging countries," Applied Energy, Elsevier, vol. 269(C).
    2. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    3. Yang, Dazhi & Kleissl, Jan, 2023. "Summarizing ensemble NWP forecasts for grid operators: Consistency, elicitability, and economic value," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1640-1654.
    4. Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
    5. Davide Astolfi & Francesco Castellani & Andrea Lombardi & Ludovico Terzi, 2021. "Multivariate SCADA Data Analysis Methods for Real-World Wind Turbine Power Curve Monitoring," Energies, MDPI, vol. 14(4), pages 1-18, February.
    6. Zhang, Juntao & Cheng, Chuntian & Yu, Shen, 2024. "Recognizing the mapping relationship between wind power output and meteorological information at a province level by coupling GIS and CNN technologies," Applied Energy, Elsevier, vol. 360(C).
    7. Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Aziz Ezzat, Ahmed, 2020. "Turbine-specific short-term wind speed forecasting considering within-farm wind field dependencies and fluctuations," Applied Energy, Elsevier, vol. 269(C).
    9. Famoso, Fabio & Brusca, Sebastian & D'Urso, Diego & Galvagno, Antonio & Chiacchio, Ferdinando, 2020. "A novel hybrid model for the estimation of energy conversion in a wind farm combining wake effects and stochastic dependability," Applied Energy, Elsevier, vol. 280(C).
    10. Duca, Victor E.L.A. & Fonseca, Thais C.O. & Cyrino Oliveira, Fernando Luiz, 2022. "Joint modelling wind speed and power via Bayesian Dynamical models," Energy, Elsevier, vol. 247(C).
    11. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    12. Qiao, Yanhui & Han, Shuang & Zhang, Yajie & Liu, Yongqian & Yan, Jie, 2024. "A multivariable wind turbine power curve modeling method considering segment control differences and short-time self-dependence," Renewable Energy, Elsevier, vol. 222(C).
    13. Nasery, Praanjal & Aziz Ezzat, Ahmed, 2023. "Yaw-adjusted wind power curve modeling: A local regression approach," Renewable Energy, Elsevier, vol. 202(C), pages 1368-1376.
    14. Wang, Hao & Ye, Jingzhen & Huang, Linxuan & Wang, Qiang & Zhang, Haohua, 2023. "A multivariable hybrid prediction model of offshore wind power based on multi-stage optimization and reconstruction prediction," Energy, Elsevier, vol. 262(PA).
    15. Wang, Peng & Li, Yanting & Zhang, Guangyao, 2023. "Probabilistic power curve estimation based on meteorological factors and density LSTM," Energy, Elsevier, vol. 269(C).
    16. Wang, Yun & Duan, Xiaocong & Zou, Runmin & Zhang, Fan & Li, Yifen & Hu, Qinghua, 2023. "A novel data-driven deep learning approach for wind turbine power curve modeling," Energy, Elsevier, vol. 270(C).
    17. Golparvar, Behzad & Papadopoulos, Petros & Ezzat, Ahmed Aziz & Wang, Ruo-Qian, 2021. "A surrogate-model-based approach for estimating the first and second-order moments of offshore wind power," Applied Energy, Elsevier, vol. 299(C).
    18. Pengfei Zhang & Zuoxia Xing & Shanshan Guo & Mingyang Chen & Qingqi Zhao, 2022. "A New Wind Turbine Power Performance Assessment Approach: SCADA to Power Model Based with Regression-Kriging," Energies, MDPI, vol. 15(13), pages 1-15, July.
    19. Moghaddass, Ramin & Sheng, Shuangwen, 2019. "An anomaly detection framework for dynamic systems using a Bayesian hierarchical framework," Applied Energy, Elsevier, vol. 240(C), pages 561-582.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1589-1597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.