IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1877-d119083.html
   My bibliography  Save this article

The Use of an Improved LSSVM and Joint Normalization on Temperature Prediction of Gearbox Output Shaft in DFWT

Author

Listed:
  • Yancai Xiao

    (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Ruolan Dai

    (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Guangjian Zhang

    (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Weijia Chen

    (Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China)

Abstract

In the working process of Double-Fed Wind Turbines (DFWT), it is very important to monitor and predict the temperature of the high-speed output shaft of the gearbox timely and effectively. Support vector machine has more advantages in the temperature prediction of wind turbines. Least squares support vector machine is suitable for online prediction due to reducing the computational complexity of support vector machine. In order to solve the sparsity of least squares support vector machine, an improved least squares support vector machine based on pruning algorithm is proposed in this paper to predict the temperature of the high-speed output shaft of gearbox using the practical data of Double-Fed Wind Turbines. At the same time, in order to improve the prediction accuracy and to solve the problem of few links between different feature parameters in common normalization method, the paper uses the method of joint normalization to preprocess the data. The principal component analysis is used to reduce the dimension of the data. Particle swarm optimization algorithm is used to optimize the parameters of the pruning least squares support vector machine. The proposed model that is established in this paper is a new model to forecast the temperature of the high-speed output shaft. The results show that its prediction accuracy is higher than that of other algorithms.

Suggested Citation

  • Yancai Xiao & Ruolan Dai & Guangjian Zhang & Weijia Chen, 2017. "The Use of an Improved LSSVM and Joint Normalization on Temperature Prediction of Gearbox Output Shaft in DFWT," Energies, MDPI, vol. 10(11), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1877-:d:119083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erik E. Kostandyan & John D. Sørensen, 2011. "Reliability Assessment of Solder Joints in Power Electronic Modules by Crack Damage Model for Wind Turbine Applications," Energies, MDPI, vol. 4(12), pages 1-13, December.
    2. Kusiak, Andrew & Verma, Anoop, 2012. "Analyzing bearing faults in wind turbines: A data-mining approach," Renewable Energy, Elsevier, vol. 48(C), pages 110-116.
    3. Yi Liang & Dongxiao Niu & Minquan Ye & Wei-Chiang Hong, 2016. "Short-Term Load Forecasting Based on Wavelet Transform and Least Squares Support Vector Machine Optimized by Improved Cuckoo Search," Energies, MDPI, vol. 9(10), pages 1-17, October.
    4. Peng Guo & Nan Bai, 2011. "Wind Turbine Gearbox Condition Monitoring with AAKR and Moving Window Statistic Methods," Energies, MDPI, vol. 4(11), pages 1-17, November.
    5. Hemmati-Sarapardeh, Abdolhossein & Varamesh, Amir & Husein, Maen M. & Karan, Kunal, 2018. "On the evaluation of the viscosity of nanofluid systems: Modeling and data assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 313-329.
    6. Santos-Alamillos, F.J. & Thomaidis, N.S. & Quesada-Ruiz, S. & Ruiz-Arias, J.A. & Pozo-Vázquez, D., 2016. "Do current wind farms in Spain take maximum advantage of spatiotemporal balancing of the wind resource?," Renewable Energy, Elsevier, vol. 96(PA), pages 574-582.
    7. Yi Liang & Dongxiao Niu & Minquan Ye & Wei-Chiang Hong, 2016. "Correction: Liang, Y., et al. Short-Term Load Forecasting Based on Wavelet Transform and Least Squares Support Vector Machine Optimized by Improved Cuckoo Search. Energies 2016, 9 , 827," Energies, MDPI, vol. 9(12), pages 1-1, December.
    8. Peng Sun & Jian Li & Junsheng Chen & Xiao Lei, 2016. "A Short-Term Outage Model of Wind Turbines with Doubly Fed Induction Generators Based on Supervisory Control and Data Acquisition Data," Energies, MDPI, vol. 9(11), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zou, Wei & Froning, Dieter & Shi, Yan & Lehnert, Werner, 2020. "A least-squares support vector machine method for modeling transient voltage in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Sun & Chongchong Zhang, 2018. "A Hybrid BA-ELM Model Based on Factor Analysis and Similar-Day Approach for Short-Term Load Forecasting," Energies, MDPI, vol. 11(5), pages 1-18, May.
    2. Xing Zhang, 2018. "Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm," Energies, MDPI, vol. 11(6), pages 1-18, June.
    3. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    4. Dongxiao Niu & Weibo Zhao & Si Li & Rongjun Chen, 2018. "Cost Forecasting of Substation Projects Based on Cuckoo Search Algorithm and Support Vector Machines," Sustainability, MDPI, vol. 10(1), pages 1-11, January.
    5. Chengshi Tian & Yan Hao, 2018. "A Novel Nonlinear Combined Forecasting System for Short-Term Load Forecasting," Energies, MDPI, vol. 11(4), pages 1-34, March.
    6. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Henningsen, Keld, 2015. "Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 144-159.
    7. Ibrahim Salem Jahan & Vaclav Snasel & Stanislav Misak, 2020. "Intelligent Systems for Power Load Forecasting: A Study Review," Energies, MDPI, vol. 13(22), pages 1-12, November.
    8. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Eiriksson, Egill Thor, 2016. "Analysing RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 91(C), pages 90-106.
    9. Yue-Gang Song & Yu-Long Zhou & Ren-Jie Han, 2018. "Neural networks for stock price prediction," Papers 1805.11317, arXiv.org.
    10. Jin-peng Liu & Chang-ling Li, 2017. "The Short-Term Power Load Forecasting Based on Sperm Whale Algorithm and Wavelet Least Square Support Vector Machine with DWT-IR for Feature Selection," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    11. Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
    12. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    13. Peng Sun & Jian Li & Junsheng Chen & Xiao Lei, 2016. "A Short-Term Outage Model of Wind Turbines with Doubly Fed Induction Generators Based on Supervisory Control and Data Acquisition Data," Energies, MDPI, vol. 9(11), pages 1-21, October.
    14. Nader Karballaeezadeh & Farah Zaremotekhases & Shahaboddin Shamshirband & Amir Mosavi & Narjes Nabipour & Peter Csiba & Annamária R. Várkonyi-Kóczy, 2020. "Intelligent Road Inspection with Advanced Machine Learning; Hybrid Prediction Models for Smart Mobility and Transportation Maintenance Systems," Energies, MDPI, vol. 13(7), pages 1-22, April.
    15. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    16. Tobi Elusakin & Mahmood Shafiee & Tosin Adedipe & Fateme Dinmohammadi, 2021. "A Stochastic Petri Net Model for O&M Planning of Floating Offshore Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-18, February.
    17. Chen, Jinglong & Pan, Jun & Li, Zipeng & Zi, Yanyang & Chen, Xuefeng, 2016. "Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals," Renewable Energy, Elsevier, vol. 89(C), pages 80-92.
    18. Cristian Velandia-Cardenas & Yolanda Vidal & Francesc Pozo, 2021. "Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data," Energies, MDPI, vol. 14(6), pages 1-26, March.
    19. Chidean, Mihaela I. & Caamaño, Antonio J. & Ramiro-Bargueño, Julio & Casanova-Mateo, Carlos & Salcedo-Sanz, Sancho, 2018. "Spatio-temporal analysis of wind resource in the Iberian Peninsula with data-coupled clustering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2684-2694.
    20. Álvarez-García, Francisco J. & Fresno-Schmolk, Gonzalo & OrtizBevia, María J. & Cabos, William & RuizdeElvira, Antonio, 2020. "Reduction of aggregate wind power variability using Empirical Orthogonal Teleconnections: An application in the Iberian Peninsula," Renewable Energy, Elsevier, vol. 159(C), pages 151-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1877-:d:119083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.