IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1173-d145015.html
   My bibliography  Save this article

Multi-Objective Optimal Design of Electro-Hydrostatic Actuator Driving Motors for Low Temperature Rise and High Power Weight Ratio

Author

Listed:
  • Guo Hong

    (School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China)

  • Tian Wei

    (School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China)

  • Xiaofeng Ding

    (School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China)

  • Chongwei Duan

    (School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China)

Abstract

With the rapid development of technology, motors have drawn increasing attention in aviation applications, especially in the more electrical aircraft and all electrical aircraft concepts. Power weight ratio and reliability are key parameters for evaluating the performance of equipment applied in aircraft. The temperature rise of the motor is closely related to the reliability of the motor. Therefore, based on Taguchi, a novel multi-objective optimization method for the heat dissipation structural design of an electro-hydrostatic actuator (EHA) drive motor was proposed in this paper. First, the thermal network model of the EHA drive motor was established. Second, a sensitivity analysis of the key parameters affecting the cooling performance of the motor was conducted, such as the thickness of fins, the height of fins, the space of fins, the potting materials and the slot fill factor. Third, taking the average temperature of the windings and the power weight ratio as the optimization goal, the multi-objective optimal design of the heat dissipation structure of the motor was carried out by applying Taguchi. Then, a 3-D finite element model of the motor was established and the steady state thermal analysis was carried out. Furthermore, a prototype of the optimal motor was manufactured, and the temperature rise under full load condition tested. The result indicated that the motor with the optimized heat dissipating structure presented a low temperature rise and high power weight ratio, therefore validating the proposed optimization method.

Suggested Citation

  • Guo Hong & Tian Wei & Xiaofeng Ding & Chongwei Duan, 2018. "Multi-Objective Optimal Design of Electro-Hydrostatic Actuator Driving Motors for Low Temperature Rise and High Power Weight Ratio," Energies, MDPI, vol. 11(5), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1173-:d:145015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1173/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1173/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Xiaofeng & Du, Min & Zhou, Tong & Guo, Hong & Zhang, Chengming, 2017. "Comprehensive comparison between silicon carbide MOSFETs and silicon IGBTs based traction systems for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 626-634.
    2. Zabdur Rehman & Kwanjae Seong, 2018. "Three-D Numerical Thermal Analysis of Electric Motor with Cooling Jacket," Energies, MDPI, vol. 11(1), pages 1-15, January.
    3. Dong Hyun Lim & Moo-Yeon Lee & Ho-Seong Lee & Sung Chul Kim, 2014. "Performance Evaluation of an In-Wheel Motor Cooling System in an Electric Vehicle/Hybrid Electric Vehicle," Energies, MDPI, vol. 7(2), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keun-Young Yoon & Soo-Whang Baek, 2019. "Robust Design Optimization with Penalty Function for Electric Oil Pumps with BLDC Motors," Energies, MDPI, vol. 12(1), pages 1-14, January.
    2. Jiongjiong Cai & Peng Ke & Xiao Qu & Zihui Wang, 2022. "Research on the Design of Auxiliary Generator for Enthalpy Reduction and Steady Speed Scroll Expander," Energies, MDPI, vol. 15(9), pages 1-17, April.
    3. Nie, Songlin & Gao, Jianhang & Ma, Zhonghai & Yin, Fanglong & Ji, Hui, 2023. "An online data-driven approach for performance prediction of electro-hydrostatic actuator with thermal-hydraulic modeling," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Guishan Yan & Zhenlin Jin & Mingkun Yang & Bing Yao, 2021. "The Thermal Balance Temperature Field of the Electro-Hydraulic Servo Pump Control System," Energies, MDPI, vol. 14(5), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taewook Ha & Nyeon Gu Han & Min Soo Kim & Kyu Heon Rho & Dong Kyu Kim, 2021. "Experimental Study on Behavior of Coolants, Particularly the Oil-Cooling Method, in Electric Vehicle Motors Using Hairpin Winding," Energies, MDPI, vol. 14(4), pages 1-15, February.
    2. Selvin Raj, Jaya Antony Perinba & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Rakshith, Bairi Levi & Bose, Jefferson Raja & Mahian, Omid & Wongwises, Somchai, 2024. "Thermal management strategies and power ratings of electric vehicle motors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Boud Verbrugge & Haaris Rasool & Mohammed Mahedi Hasan & Sajib Chakraborty & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2022. "Reliability Assessment of SiC-Based Depot Charging Infrastructure with Smart and Bidirectional (V2X) Charging Strategies for Electric Buses," Energies, MDPI, vol. 16(1), pages 1-15, December.
    4. Xiaofeng Ding & Min Du & Jiawei Cheng & Feida Chen & Suping Ren & Hong Guo, 2017. "Impact of Silicon Carbide Devices on the Dynamic Performance of Permanent Magnet Synchronous Motor Drive Systems for Electric Vehicles," Energies, MDPI, vol. 10(3), pages 1-19, March.
    5. Gaurav Kumar Pandey & Siddharth Sriram Sikha & Abhineet Thakur & Sai Sravan Yarlagadda & Sai Santosh Thatikonda & Bibin Baiju suja & Arkadiusz Mystkowski & Egidijus Dragašius & Edison Gundabattini, 2023. "Thermal Mapping and Heat Transfer Analysis of an Induction Motor of an Electric Vehicle Using Nanofluids as a Cooling Medium," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    6. Guishan Yan & Zhenlin Jin & Mingkun Yang & Bing Yao, 2021. "The Thermal Balance Temperature Field of the Electro-Hydraulic Servo Pump Control System," Energies, MDPI, vol. 14(5), pages 1-24, March.
    7. Sameer Madhavan & Raunak Devdatta P B & Edison Gundabattini & Arkadiusz Mystkowski, 2022. "Thermal Analysis and Heat Management Strategies for an Induction Motor, a Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    8. Guo, Qingbo & Zhang, Chengming & Li, Liyi & Gerada, David & Zhang, Jiangpeng & Wang, Mingyi, 2017. "Design and implementation of a loss optimization control for electric vehicle in-wheel permanent-magnet synchronous motor direct drive system," Applied Energy, Elsevier, vol. 204(C), pages 1317-1332.
    9. Wang, Hanqing & Gaillard, Arnaud & Hissel, Daniel, 2019. "A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles," Renewable Energy, Elsevier, vol. 141(C), pages 124-138.
    10. Xu, Jiamin & Zhang, Caizhi & Wan, Zhongmin & Chen, Xi & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Dan Dan & Yihang Zhao & Mingshan Wei & Xuehui Wang, 2023. "Review of Thermal Management Technology for Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-38, June.
    12. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Ding, Xiaofeng & Chen, Feida & Du, Min & Guo, Hong & Ren, Suping, 2017. "Effects of silicon carbide MOSFETs on the efficiency and power quality of a microgrid-connected inverter," Applied Energy, Elsevier, vol. 201(C), pages 270-283.
    14. Federica Graffeo & Silvio Vaschetto & Alessio Miotto & Fabio Carbone & Alberto Tenconi & Andrea Cavagnino, 2021. "Lumped-Parameters Thermal Network of PM Synchronous Machines for Automotive Brake-by-Wire Systems," Energies, MDPI, vol. 14(18), pages 1-18, September.
    15. Ding, Xiaofeng & Lu, Peng & Shan, Zhenyu, 2021. "A high-accuracy switching loss model of SiC MOSFETs in a motor drive for electric vehicles," Applied Energy, Elsevier, vol. 291(C).
    16. Zhang, Jun & Du, Xiong & Qian, Cheng, 2021. "Lifetime improvement for wind power generation system based on optimal effectiveness of thermal management," Applied Energy, Elsevier, vol. 286(C).
    17. Likun Ai & Yiping Lu & Jiade Han & Wenxu Suo, 2023. "Simulation of the Temperature of a Shielding Induction Motor of the Nuclear Main Pump under Different Turbulence Models," Energies, MDPI, vol. 16(6), pages 1-15, March.
    18. Han, Feng & Guo, Hong & Ding, Xiaofeng, 2021. "Design and optimization of a liquid cooled heat sink for a motor inverter in electric vehicles," Applied Energy, Elsevier, vol. 291(C).
    19. Ding, Xiaofeng & Guo, Hong & Xiong, Rui & Chen, Feida & Zhang, Donghuai & Gerada, Chris, 2017. "A new strategy of efficiency enhancement for traction systems in electric vehicles," Applied Energy, Elsevier, vol. 205(C), pages 880-891.
    20. Edemar O. Prado & Pedro C. Bolsi & Hamiltom C. Sartori & José R. Pinheiro, 2022. "An Overview about Si, Superjunction, SiC and GaN Power MOSFET Technologies in Power Electronics Applications," Energies, MDPI, vol. 15(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1173-:d:145015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.