IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1068-d143364.html
   My bibliography  Save this article

A Novel Dual-Scale Deep Belief Network Method for Daily Urban Water Demand Forecasting

Author

Listed:
  • Yuebing Xu

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
    Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China)

  • Jing Zhang

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Zuqiang Long

    (Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China)

  • Yan Chen

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

Abstract

Water demand forecasting applies data supports for the scheduling and decision-making of urban water supply systems. In this study, a new dual-scale deep belief network (DSDBN) approach for daily urban water demand forecasting was proposed. Original daily water demand time series was decomposed into several intrinsic mode functions (IMFs) and one residue component with ensemble empirical mode decomposition (EEMD) technique. Stochastic and deterministic terms were reconstructed through analyzing the frequency characteristics of IMFs and residue using generalized Fourier transform. The deep belief network (DBN) model was used for prediction using the two feature terms. The outputs of the double DBNs are summed as the final forecasting results. Historical daily water demand datasets from an urban waterworks in Zhuzhou, China, were investigated by the proposed DSDBN model. The mean absolute percentage error (MAPE), normalized root-mean-square error (NRMSE), correlation coefficient (CC) and determination coefficient (DC) were used as evaluation criteria. The results were compared with the autoregressive integrated moving average (ARIMA) model, feed forward neural network (FFNN) model, support vector regression (SVR) model, EEMD and their combinations, and single DBN model. The results obtained in the test period indicate that the proposed model has the smallest MAPE and NRMSE values of 1.291099 and 0.016625, respectively, and the largest CC and DC values of 0.976528 and 0.953512, respectively. Therefore, the proposed DSDBN method is a useful tool for daily urban water demand forecasting and outperforms other models in common use.

Suggested Citation

  • Yuebing Xu & Jing Zhang & Zuqiang Long & Yan Chen, 2018. "A Novel Dual-Scale Deep Belief Network Method for Daily Urban Water Demand Forecasting," Energies, MDPI, vol. 11(5), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1068-:d:143364
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1068/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1068/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, H.Z. & Wang, G.B. & Li, G.Q. & Peng, J.C. & Liu, Y.T., 2016. "Deep belief network based deterministic and probabilistic wind speed forecasting approach," Applied Energy, Elsevier, vol. 182(C), pages 80-93.
    2. Zhang, Gioqinang & Hu, Michael Y., 1998. "Neural network forecasting of the British Pound/US Dollar exchange rate," Omega, Elsevier, vol. 26(4), pages 495-506, August.
    3. Guoqiang Chen & Tianyu Long & Jiangong Xiong & Yun Bai, 2017. "Multiple Random Forests Modelling for Urban Water Consumption Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4715-4729, December.
    4. Chengdong Li & Zixiang Ding & Jianqiang Yi & Yisheng Lv & Guiqing Zhang, 2018. "Deep Belief Network Based Hybrid Model for Building Energy Consumption Prediction," Energies, MDPI, vol. 11(1), pages 1-26, January.
    5. Xiaomin Xu & Dongxiao Niu & Lihui Zhang & Yongli Wang & Keke Wang, 2017. "Ice Cover Prediction of a Power Grid Transmission Line Based on Two-Stage Data Processing and Adaptive Support Vector Machine Optimized by Genetic Tabu Search," Energies, MDPI, vol. 10(11), pages 1-18, November.
    6. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    7. Tang, Ling & Yu, Lean & Wang, Shuai & Li, Jianping & Wang, Shouyang, 2012. "A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 93(C), pages 432-443.
    8. Dedinec, Aleksandra & Filiposka, Sonja & Dedinec, Aleksandar & Kocarev, Ljupco, 2016. "Deep belief network based electricity load forecasting: An analysis of Macedonian case," Energy, Elsevier, vol. 115(P3), pages 1688-1700.
    9. Wang, Shouxiang & Zhang, Na & Wu, Lei & Wang, Yamin, 2016. "Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method," Renewable Energy, Elsevier, vol. 94(C), pages 629-636.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Ting Bai & Wei Jia & Xue-Bo Jin & Ting-Li Su & Jian-Lei Kong & Zhi-Gang Shi, 2023. "Nonstationary Time Series Prediction Based on Deep Echo State Network Tuned by Bayesian Optimization," Mathematics, MDPI, vol. 11(6), pages 1-22, March.
    2. Caspar V. C. Geelen & Doekle R. Yntema & Jaap Molenaar & Karel J. Keesman, 2021. "Burst Detection by Water Demand Nowcasting Based on Exogenous Sensors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1183-1196, March.
    3. Bokde, Neeraj Dhanraj & Tranberg, Bo & Andresen, Gorm Bruun, 2021. "Short-term CO2 emissions forecasting based on decomposition approaches and its impact on electricity market scheduling," Applied Energy, Elsevier, vol. 281(C).
    4. Xin Liu & Xuefeng Sang & Jiaxuan Chang & Yang Zheng, 2021. "Multi-Model Coupling Water Demand Prediction Optimization Method for Megacities Based on Time Series Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4021-4041, September.
    5. Yang, Weifei & Xiao, Changlai & Zhang, Zhihao & Liang, Xiujuan, 2022. "Identification of the formation temperature field of the southern Songliao Basin, China based on a deep belief network," Renewable Energy, Elsevier, vol. 182(C), pages 32-42.
    6. Jing Liu & Xin-Lei Zhou & Lu-Qi Zhang & Yue-Ping Xu, 2023. "Forecasting Short-term Water Demands with an Ensemble Deep Learning Model for a Water Supply System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 2991-3012, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing, 2017. "Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction," Renewable Energy, Elsevier, vol. 113(C), pages 1345-1358.
    2. Hongze Li & Hongyu Liu & Hongyan Ji & Shiying Zhang & Pengfei Li, 2020. "Ultra-Short-Term Load Demand Forecast Model Framework Based on Deep Learning," Energies, MDPI, vol. 13(18), pages 1-16, September.
    3. Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.
    4. Sun, Shaolong & Wang, Shouyang & Wei, Yunjie, 2019. "A new multiscale decomposition ensemble approach for forecasting exchange rates," Economic Modelling, Elsevier, vol. 81(C), pages 49-58.
    5. Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
    6. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    7. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    8. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    9. Wang, Jianzhou & Du, Pei & Niu, Tong & Yang, Wendong, 2017. "A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting," Applied Energy, Elsevier, vol. 208(C), pages 344-360.
    10. Peng Chen & Andrew Vivian & Cheng Ye, 2022. "Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine," Annals of Operations Research, Springer, vol. 313(1), pages 559-601, June.
    11. Hadjout, D. & Torres, J.F. & Troncoso, A. & Sebaa, A. & Martínez-Álvarez, F., 2022. "Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market," Energy, Elsevier, vol. 243(C).
    12. Fu, Sibao & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2019. "Evolutionary support vector machine for RMB exchange rate forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 692-704.
    13. Jihong Xiao & Xuehong Zhu & Chuangxia Huang & Xiaoguang Yang & Fenghua Wen & Meirui Zhong, 2019. "A New Approach for Stock Price Analysis and Prediction Based on SSA and SVM," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 287-310, January.
    14. Wang, Jianzhou & Dong, Yunxuan & Zhang, Kequan & Guo, Zhenhai, 2017. "A numerical model based on prior distribution fuzzy inference and neural networks," Renewable Energy, Elsevier, vol. 112(C), pages 486-497.
    15. Peng, Yanni & Xiang, Wanli, 2020. "Short-term traffic volume prediction using GA-BP based on wavelet denoising and phase space reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    16. Hu, Jianming & Heng, Jiani & Wen, Jiemei & Zhao, Weigang, 2020. "Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm," Renewable Energy, Elsevier, vol. 162(C), pages 1208-1226.
    17. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    18. Niu, Xinsong & Wang, Jiyang, 2019. "A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 241(C), pages 519-539.
    19. Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
    20. Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Duan, Jizheng & Chang, Mingheng & Chen, Bolong, 2021. "Short-term wind speed forecasting using recurrent neural networks with error correction," Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1068-:d:143364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.