IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i4d10.1007_s11269-021-02768-9.html
   My bibliography  Save this article

Burst Detection by Water Demand Nowcasting Based on Exogenous Sensors

Author

Listed:
  • Caspar V. C. Geelen

    (Wageningen University)

  • Doekle R. Yntema

    (Wetsus, European Centre of Excellence for Sustainable Water Technology)

  • Jaap Molenaar

    (Wageningen University)

  • Karel J. Keesman

    (Wageningen University
    Wetsus, European Centre of Excellence for Sustainable Water Technology)

Abstract

Bursts of drinking water pipes not only cause loss of drinking water, but also damage below and above ground infrastructure. Short-term water demand forecasting is a valuable tool in burst detection, as deviations between the forecast and actual water demand may indicate a new burst. Many of burst detection methods struggle with false positives due to non-seasonal water consumption as a result of e.g. environmental, economic or demographic exogenous influences, such as weather, holidays, festivities or pandemics. Finding a robust alternative that reduces the false positive rate of burst detection and does not rely on data from exogenous processes is essential. We present such a burst detection method, based on Bayesian ridge regression and Random Sample Consensus. Our exogenous nowcasting method relies on signals of all nearby flow and pressure sensors in the distribution net with the aim to reduce the false positive rate. The method requires neither data of exogenous processes, nor extensive historical data, but only requires one week of historical data per flow/pressure sensor. The exogenous nowcasting method is compared with a common water demand forecasting method for burst detection and shows sufficiently higher Nash-Sutcliffe model efficiencies of 82.7% - 90.6% compared to 57.9% - 77.7%, respectively. These efficiency ranges indicate a more accurate water demand prediction, resulting in more precise burst detection.

Suggested Citation

  • Caspar V. C. Geelen & Doekle R. Yntema & Jaap Molenaar & Karel J. Keesman, 2021. "Burst Detection by Water Demand Nowcasting Based on Exogenous Sensors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1183-1196, March.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:4:d:10.1007_s11269-021-02768-9
    DOI: 10.1007/s11269-021-02768-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02768-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02768-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chatfield, Chris, 1993. "Calculating Interval Forecasts: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 143-144, April.
    2. Mukand Babel & Victor Shinde, 2011. "Identifying Prominent Explanatory Variables for Water Demand Prediction Using Artificial Neural Networks: A Case Study of Bangkok," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1653-1676, April.
    3. Chatfield, Chris, 1993. "Calculating Interval Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 121-135, April.
    4. E. Pacchin & F. Gagliardi & S. Alvisi & M. Franchini, 2019. "A Comparison of Short-Term Water Demand Forecasting Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1481-1497, March.
    5. Yuebing Xu & Jing Zhang & Zuqiang Long & Yan Chen, 2018. "A Novel Dual-Scale Deep Belief Network Method for Daily Urban Water Demand Forecasting," Energies, MDPI, vol. 11(5), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang Pengfei & Jiang Zhiqiang & Duan Jiefeng, 2023. "Burst Analysis of Water Supply Pipe Based on Hydrodynamic Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2161-2179, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berrin Aytac & S. Wu, 2013. "Characterization of demand for short life-cycle technology products," Annals of Operations Research, Springer, vol. 203(1), pages 255-277, March.
    2. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    3. repec:lan:wpaper:470 is not listed on IDEAS
    4. Charles, Amelie & Darne, Olivier & Kim, Jae, 2016. "Stock Return Predictability: Evaluation based on Prediction Intervals," MPRA Paper 70143, University Library of Munich, Germany.
    5. Dhaoui, Iyad, 2015. "Climat des Affaires et Compétitivité de l’Entreprise Tunisienne Après la Révolution : Analyses et Perspectives [Business Climate and Competitiveness of the Tunisian Enterprise After the Revolution:," MPRA Paper 87331, University Library of Munich, Germany.
    6. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2005. "Bootstrap prediction intervals for power-transformed time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 219-235.
    7. Li, Yushu & Andersson, Jonas, 2014. "A Likelihood Ratio and Markov Chain Based Method to Evaluate Density Forecasting," Discussion Papers 2014/12, Norwegian School of Economics, Department of Business and Management Science.
    8. Klaus Abberger, 2006. "Kernel smoothed prediction intervals for ARMA models," Statistical Papers, Springer, vol. 47(1), pages 1-15, January.
    9. Roberto Buizza & James W. Taylor, 2004. "A comparison of temperature density forecasts from GARCH and atmospheric models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 337-355.
    10. Yushu Li & Jonas Andersson, 2020. "A likelihood ratio and Markov chain‐based method to evaluate density forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 47-55, January.
    11. James W. Taylor & Derek W. Bunn, 1999. "A Quantile Regression Approach to Generating Prediction Intervals," Management Science, INFORMS, vol. 45(2), pages 225-237, February.
    12. Wolfgang Nierhaus, 2019. "Wirtschaftskonjunktur 2018: Prognose und Wirklichkeit," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 72(03), pages 22-29, February.
    13. Melard, G. & Pasteels, J. -M., 2000. "Automatic ARIMA modeling including interventions, using time series expert software," International Journal of Forecasting, Elsevier, vol. 16(4), pages 497-508.
    14. Harvey, David I. & Newbold, Paul, 2003. "The non-normality of some macroeconomic forecast errors," International Journal of Forecasting, Elsevier, vol. 19(4), pages 635-653.
    15. Mirakyan, Atom & Meyer-Renschhausen, Martin & Koch, Andreas, 2017. "Composite forecasting approach, application for next-day electricity price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 228-237.
    16. Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
    17. Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003. "On SETAR non-linearity and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
    18. Dhaoui, Elwardi, 2015. "Climat des Affaires et Compétitivité de l’Entreprise Tunisienne Après la Révolution : Analyses et Perspectives [Business Climate and Competitiveness of the Tunisian Enterprise After the Revolution:," MPRA Paper 70675, University Library of Munich, Germany.
    19. Diego Fresoli, 2022. "Bootstrap VAR forecasts: The effect of model uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 279-293, March.
    20. Ashkan Zarnani & Soheila Karimi & Petr Musilek, 2019. "Quantile Regression and Clustering Models of Prediction Intervals for Weather Forecasts: A Comparative Study," Forecasting, MDPI, vol. 1(1), pages 1-20, October.
    21. Chen, Yi-Hsuan & Tu, Anthony H., 2013. "Estimating hedged portfolio value-at-risk using the conditional copula: An illustration of model risk," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 514-528.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:4:d:10.1007_s11269-021-02768-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.