IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v26y1998i4p495-506.html
   My bibliography  Save this article

Neural network forecasting of the British Pound/US Dollar exchange rate

Author

Listed:
  • Zhang, Gioqinang
  • Hu, Michael Y.

Abstract

Neural networks have successfully been used for exchange rate forecasting. However, due to a large number of parameters to be estimated empirically, it is not a simple task to select the appropriate neural network architecture for an exchange rate forecasting problem. Researchers often overlook the effect of neural network parameters on the performance of neural network forecasting. This paper examines the effects of the number of input and hidden nodes as well as the size of the training sample on the in-sample and out-of-sample performance. The British pound/US dollar is used for detailed examinations. It is found that neural networks outperform linear models, particularly when the forecast horizon is short. In addition, the number of input nodes has a greater impact on performance than the number of hidden nodes, while a larger number of observations do reduce forecast errors.

Suggested Citation

  • Zhang, Gioqinang & Hu, Michael Y., 1998. "Neural network forecasting of the British Pound/US Dollar exchange rate," Omega, Elsevier, vol. 26(4), pages 495-506, August.
  • Handle: RePEc:eee:jomega:v:26:y:1998:i:4:p:495-506
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(98)00003-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Meese & Kenneth Rogoff, 1983. "The Out-of-Sample Failure of Empirical Exchange Rate Models: Sampling Error or Misspecification?," NBER Chapters, in: Exchange Rates and International Macroeconomics, pages 67-112, National Bureau of Economic Research, Inc.
    2. Diebold, Francis X. & Nason, James A., 1990. "Nonparametric exchange rate prediction?," Journal of International Economics, Elsevier, vol. 28(3-4), pages 315-332, May.
    3. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Hsieh, David A, 1989. "Modeling Heteroscedasticity in Daily Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(3), pages 307-317, July.
    6. Hung, Ming S. & Denton, James W., 1993. "Training neural networks with the GRG2 nonlinear optimizer," European Journal of Operational Research, Elsevier, vol. 69(1), pages 83-91, August.
    7. Chinn, Menzie David, 1991. "Some linear and nonlinear thoughts on exchange rates," Journal of International Money and Finance, Elsevier, vol. 10(2), pages 214-230, June.
    8. repec:bla:jfinan:v:43:y:1988:i:4:p:933-48 is not listed on IDEAS
    9. Hsieh, David A., 1988. "The statistical properties of daily foreign exchange rates: 1974-1983," Journal of International Economics, Elsevier, vol. 24(1-2), pages 129-145, February.
    10. Peel, D A & Yadav, P, 1995. "The Time Series Behaviour of Spot Exchange Rates in the German Hyper-inflation Period: (Was the Process Chaotic?)," Empirical Economics, Springer, vol. 20(3), pages 455-471.
    11. Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
    12. Wu, Berlin, 1995. "Model-free forecasting for nonlinear time series (with application to exchange rates)," Computational Statistics & Data Analysis, Elsevier, vol. 19(4), pages 433-459, April.
    13. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    14. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    15. Curry, B. & Morgan, P., 1997. "Neural networks: a need for caution," Omega, Elsevier, vol. 25(1), pages 123-133, February.
    16. Shanker, M. & Hu, M. Y. & Hung, M. S., 1996. "Effect of data standardization on neural network training," Omega, Elsevier, vol. 24(4), pages 385-397, August.
    17. Richard A. Meese & Andrew K. Rose, 1991. "An Empirical Assessment of Non-Linearities in Models of Exchange Rate Determination," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 603-619.
    18. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    19. Hsieh, David A, 1989. "Testing for Nonlinear Dependence in Daily Foreign Exchange Rates," The Journal of Business, University of Chicago Press, vol. 62(3), pages 339-368, July.
    20. Meese, R. & Rogoff, K., 1988. "Was It Real? The Exchange Rate-Interest Differential Ralation Over The Modern Floating-Rate Period," Working papers 368, Wisconsin Madison - Social Systems.
    21. Mizrach, B, 1992. "Multivariate Nearest-Neighbor Forecasts of EMS Exchange Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 151-163, Suppl. De.
    22. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai Zongwu & Chen Linna & Fang Ying, 2012. "A New Forecasting Model for USD/CNY Exchange Rate," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-20, September.
    2. Tim Bollerslev & Ray Y. Chou & Narayanan Jayaraman & Kenneth F. Kroner - L, 1991. "es modéles ARCH en finance : un point sur la théorie et les résultats empiriques," Annals of Economics and Statistics, GENES, issue 24, pages 1-59.
    3. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    4. Firat Melih Yilmaz & Ozer Arabaci, 2021. "Should Deep Learning Models be in High Demand, or Should They Simply be a Very Hot Topic? A Comprehensive Study for Exchange Rate Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 217-245, January.
    5. repec:wyi:journl:002135 is not listed on IDEAS
    6. Kondo, Koji, 1997. "Statistical analysis of foreign exchange rates: application of cointegration model and regime-switching stochastic volatility model," ISU General Staff Papers 1997010108000012997, Iowa State University, Department of Economics.
    7. Jing Yang & Nikola Gradojevic, 2006. "Non-linear, non-parametric, non-fundamental exchange rate forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 227-245.
    8. Chihwa Kao, 2001. "Geography, Industrial Organization, and Agglomeration Heteroskedasticity Models with Estimates of the Variances of Foreign Exchange Rates," Center for Policy Research Working Papers 34, Center for Policy Research, Maxwell School, Syracuse University.
    9. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    10. David Peel & Alan Speight, 1994. "Testing for non-linear dependence in inter-war exchange rates," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 130(2), pages 391-417, June.
    11. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. repec:adr:anecst:y:1991:i:24:p:01 is not listed on IDEAS
    13. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    14. Hong, Yongmiao & Li, Haitao & Zhao, Feng, 2007. "Can the random walk model be beaten in out-of-sample density forecasts? Evidence from intraday foreign exchange rates," Journal of Econometrics, Elsevier, vol. 141(2), pages 736-776, December.
    15. Bruce Mizrach, 1996. "Mean Reversion in EMS Exchange Rates," Departmental Working Papers 199525, Rutgers University, Department of Economics.
    16. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    17. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
    18. Wu, Yih-Jiuan, 1998. "Exchange rate forecasting: an application of radial basis function neural networks," ISU General Staff Papers 1998010108000013540, Iowa State University, Department of Economics.
    19. Gencay, Ramazan, 1999. "Linear, non-linear and essential foreign exchange rate prediction with simple technical trading rules," Journal of International Economics, Elsevier, vol. 47(1), pages 91-107, February.
    20. repec:wyi:journl:002068 is not listed on IDEAS
    21. Jaehun Chung & Yongmiao Hong, 2013. "Model-Free Evaluation of Directional Predictability in Foreign Exchange," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    22. Yongmiao Hong & Haitao Li & Feng Zhao, 2013. "Can the Random Walk Model be Beaten in Out-of-Sample Density Forecasts? Evidence from Intraday Forei," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    23. Kartono, Agus & Solekha, Siti & Sumaryada, Tony & Irmansyah,, 2021. "Foreign currency exchange rate prediction using non-linear Schrödinger equations with economic fundamental parameters," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:26:y:1998:i:4:p:495-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.