IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p508-d133728.html
   My bibliography  Save this article

Development of a Biodegradable Electro-Insulating Liquid and Its Subsequent Modification by Nanoparticles

Author

Listed:
  • Vaclav Mentlik

    (Department of Technologies and Measurement, Faculty of Electrical Engineering, University of West Bohemia, 30614 Pilsen, Czech Republic)

  • Pavel Trnka

    (Department of Technologies and Measurement, Faculty of Electrical Engineering, University of West Bohemia, 30614 Pilsen, Czech Republic)

  • Jaroslav Hornak

    (Department of Technologies and Measurement, Faculty of Electrical Engineering, University of West Bohemia, 30614 Pilsen, Czech Republic)

  • Pavel Totzauer

    (Department of Technologies and Measurement, Faculty of Electrical Engineering, University of West Bohemia, 30614 Pilsen, Czech Republic)

Abstract

The paper is focused on the possibility of replacing petroleum-based oils used as electro-insulating fluids in high voltage machinery. Based on ten years of study the candidate base oil for the central European region is rapeseed (Brassica napus) oil. Numerous studies on the elementary properties of pure natural esters have been published. An advantage of natural ester use is its easy biodegradability, tested according to OECD–301D (Organisation for Economic Co-operation and Development) standard, and compliance with sustainable development visions. A rapeseed oil base has been chosen for its better resistance to degradation in electric fields and its higher oxidation stability. The overall ester properties are not fully competitive with petroleum-based oils and therefore have to be improved. Percolation treatment and oxidation inhibition by a phenolic-type inhibitor is proposed and the resulting final properties are discussed. These resulting fluid properties are further improved using titanium dioxide (TiO 2 ) nanoparticles with a silica surface treatment. This fluid has properties suitable for use in sealed distribution transformers with the advantage of a lower price in comparison with other currently used biodegradable fluids.

Suggested Citation

  • Vaclav Mentlik & Pavel Trnka & Jaroslav Hornak & Pavel Totzauer, 2018. "Development of a Biodegradable Electro-Insulating Liquid and Its Subsequent Modification by Nanoparticles," Energies, MDPI, vol. 11(3), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:508-:d:133728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kapila Bandara & Chandima Ekanayake & Tapan Saha & Hui Ma, 2016. "Performance of Natural Ester as a Transformer Oil in Moisture-Rich Environments," Energies, MDPI, vol. 9(4), pages 1-13, March.
    2. Yuzhen Lv & Muhammad Rafiq & Chengrong Li & Bingliang Shan, 2017. "Study of Dielectric Breakdown Performance of Transformer Oil Based Magnetic Nanofluids," Energies, MDPI, vol. 10(7), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Issouf Fofana & U. Mohan Rao, 2018. "Engineering Dielectric Liquid Applications," Energies, MDPI, vol. 11(10), pages 1-4, October.
    2. Miloš Šárpataky & Juraj Kurimský & Michal Rajňák & Michal Krbal & Marek Adamčák, 2022. "Dielectric Performance of Natural- and Synthetic-Ester-Based Nanofluids with Fullerene Nanoparticles," Energies, MDPI, vol. 16(1), pages 1-15, December.
    3. Karatas, Mehmet & Bicen, Yunus, 2022. "Nanoparticles for next-generation transformer insulating fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Pawel Rozga & Abderrahmane Beroual & Piotr Przybylek & Maciej Jaroszewski & Konrad Strzelecki, 2020. "A Review on Synthetic Ester Liquids for Transformer Applications," Energies, MDPI, vol. 13(23), pages 1-33, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawel Rozga, 2016. "Streamer Propagation and Breakdown in a Very Small Point-Insulating Plate Gap in Mineral Oil and Ester Liquids at Positive Lightning Impulse Voltage," Energies, MDPI, vol. 9(6), pages 1-12, June.
    2. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    3. Suhaib Ahmad Khan & Mohd Tariq & Asfar Ali Khan & Shabana Urooj & Lucian Mihet-Popa, 2022. "An Experimental Study and Statistical Analysis on the Electrical Properties of Synthetic Ester-Based Nanofluids," Energies, MDPI, vol. 15(23), pages 1-14, December.
    4. M. Z. H. Makmud & H. A. Illias & C. Y. Chee & M. S. Sarjadi, 2018. "Influence of Conductive and Semi-Conductive Nanoparticles on the Dielectric Response of Natural Ester-Based Nanofluid Insulation," Energies, MDPI, vol. 11(2), pages 1-12, February.
    5. Jacek Fal & Omid Mahian & Gaweł Żyła, 2018. "Nanofluids in the Service of High Voltage Transformers: Breakdown Properties of Transformer Oils with Nanoparticles, a Review," Energies, MDPI, vol. 11(11), pages 1-46, October.
    6. Karatas, Mehmet & Bicen, Yunus, 2022. "Nanoparticles for next-generation transformer insulating fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Zbigniew Nadolny & Grzegorz Dombek, 2018. "Electro-Insulating Nanofluids Based on Synthetic Ester and TiO 2 or C 60 Nanoparticles in Power Transformer," Energies, MDPI, vol. 11(8), pages 1-11, July.
    8. Abi Munajad & Cahyo Subroto & Suwarno, 2017. "Study on the Effects of Thermal Aging on Insulating Paper for High Voltage Transformer Composite with Natural Ester from Palm Oil Using Fourier Transform Infrared Spectroscopy (FTIR) and Energy Disper," Energies, MDPI, vol. 10(11), pages 1-15, November.
    9. Pichai Muangpratoom & Chinnapat Suriyasakulpong & Sakda Maneerot & Wanwilai Vittayakorn & Norasage Pattanadech, 2023. "Experimental Study of the Electrical and Physiochemical Properties of Different Types of Crude Palm Oils as Dielectric Insulating Fluids in Transformers," Sustainability, MDPI, vol. 15(19), pages 1-18, September.
    10. Pedro J. Villegas & Juan A. Martín-Ramos & Juan Díaz & Juan Á. Martínez & Miguel J. Prieto & Alberto M. Pernía, 2017. "A Digitally Controlled Power Converter for an Electrostatic Precipitator," Energies, MDPI, vol. 10(12), pages 1-24, December.
    11. Usama Khaled & Abderrahmane Beroual, 2018. "The Effect of Electronic Scavenger Additives on the AC Dielectric Strength of Transformer Mineral Oil," Energies, MDPI, vol. 11(10), pages 1-12, September.
    12. Janvier Sylvestre N’cho & Issouf Fofana & Yazid Hadjadj & Abderrahmane Beroual, 2016. "Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(5), pages 1-29, May.
    13. Nur Aqilah Mohamad & Norhafiz Azis & Jasronita Jasni & Mohd Zainal Abidin Ab Kadir & Robiah Yunus & Zaini Yaakub, 2018. "Physiochemical and Electrical Properties of Refined, Bleached and Deodorized Palm Oil under High Temperature Ageing for Application in Transformers," Energies, MDPI, vol. 11(6), pages 1-13, June.
    14. Kakou D. Kouassi & Issouf Fofana & Ladji Cissé & Yazid Hadjadj & Kouba M. Lucia Yapi & K. Ambroise Diby, 2018. "Impact of Low Molecular Weight Acids on Oil Impregnated Paper Insulation Degradation," Energies, MDPI, vol. 11(6), pages 1-13, June.
    15. Pawel Rozga & Marcin Stanek & Bartlomiej Pasternak, 2018. "Characteristics of Negative Streamer Development in Ester Liquids and Mineral Oil in a Point-To-Sphere Electrode System with a Pressboard Barrier," Energies, MDPI, vol. 11(5), pages 1-13, April.
    16. Suhaib Ahmad Khan & Mohd Tariq & Asfar Ali Khan & Basem Alamri & Lucian Mihet-Popa, 2022. "Influence of Area and Volume Effect on Dielectric Behaviour of the Mineral Oil-Based Nanofluids," Energies, MDPI, vol. 15(9), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:508-:d:133728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.