IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i6p467-d72209.html
   My bibliography  Save this article

Streamer Propagation and Breakdown in a Very Small Point-Insulating Plate Gap in Mineral Oil and Ester Liquids at Positive Lightning Impulse Voltage

Author

Listed:
  • Pawel Rozga

    (Institute of Electrical Power Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland)

Abstract

This article presents the results of comparative studies on streamer propagation and breakdown in a point-insulating plate electrode system in mineral oil and two ester liquids. The studies were performed for a 10-mm gap and a positive standard lightning impulse. The work was focused on the comparison of light waveforms registered using the photomultiplier technique. The results indicated that both esters demonstrate a lower resistance against the appearance of fast energetic streamers than mineral oil. The reason for such a conclusion is that the number of lightning impulses supplied to the electrode system for which the above-mentioned fast streamers appeared at a given voltage level was always higher in the case of ester liquids than mineral oil. In terms of breakdown, the esters tested were assessed as more susceptible to the appearance of breakdown in the investigated electrode system. The number of breakdowns recorded in the case of esters was always greater than the corresponding number of breakdowns in mineral oil. This may be supposed on the basis of the obtained results that imply that, in both synthetic and natural ester, the formed breakdown channel, which bridged the gap through the surface of pressboard plate, is characterized by higher energy than in the case of mineral oil.

Suggested Citation

  • Pawel Rozga, 2016. "Streamer Propagation and Breakdown in a Very Small Point-Insulating Plate Gap in Mineral Oil and Ester Liquids at Positive Lightning Impulse Voltage," Energies, MDPI, vol. 9(6), pages 1-12, June.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:467-:d:72209
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/6/467/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/6/467/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kapila Bandara & Chandima Ekanayake & Tapan Saha & Hui Ma, 2016. "Performance of Natural Ester as a Transformer Oil in Moisture-Rich Environments," Energies, MDPI, vol. 9(4), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carl P. Wolmarans & Cuthbert Nyamupangedengu & Carina Schumann & Neil J. Coville & Marcelo M. F. Saba, 2022. "The Influence of Diethylaniline and Toluene on the Streamer Propagation in Cyclohexane between a Point-Plane Gap under Positive Impulse Voltage Stress," Energies, MDPI, vol. 15(13), pages 1-17, July.
    2. Zbigniew Nadolny & Grzegorz Dombek, 2018. "Electro-Insulating Nanofluids Based on Synthetic Ester and TiO 2 or C 60 Nanoparticles in Power Transformer," Energies, MDPI, vol. 11(8), pages 1-11, July.
    3. Shen, Zijia & Wang, Feipeng & Wang, Zhiqing & Li, Jian, 2021. "A critical review of plant-based insulating fluids for transformer: 30-year development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Ming Ren & Chongxing Zhang & Ming Dong & Rixin Ye & Ricardo Albarracín, 2016. "A New Switching Impulse Generator Based on Transformer Boosting and Insulated Gate Bipolar Transistor Trigger Control," Energies, MDPI, vol. 9(8), pages 1-15, August.
    5. Pawel Rozga & Marcin Stanek & Bartlomiej Pasternak, 2018. "Characteristics of Negative Streamer Development in Ester Liquids and Mineral Oil in a Point-To-Sphere Electrode System with a Pressboard Barrier," Energies, MDPI, vol. 11(5), pages 1-13, April.
    6. Pawel Rozga & Abderrahmane Beroual & Piotr Przybylek & Maciej Jaroszewski & Konrad Strzelecki, 2020. "A Review on Synthetic Ester Liquids for Transformer Applications," Energies, MDPI, vol. 13(23), pages 1-33, December.
    7. Huaqiang Li & Linfeng Xia & Shengwei Cai & Zhiqiang Huang & Jiaqi Li & Lisheng Zhong, 2021. "Influence of Molecule Structure on Lightning Impulse Breakdown of Ester Liquids," Energies, MDPI, vol. 14(4), pages 1-15, February.
    8. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    2. Vaclav Mentlik & Pavel Trnka & Jaroslav Hornak & Pavel Totzauer, 2018. "Development of a Biodegradable Electro-Insulating Liquid and Its Subsequent Modification by Nanoparticles," Energies, MDPI, vol. 11(3), pages 1-16, February.
    3. M. Z. H. Makmud & H. A. Illias & C. Y. Chee & M. S. Sarjadi, 2018. "Influence of Conductive and Semi-Conductive Nanoparticles on the Dielectric Response of Natural Ester-Based Nanofluid Insulation," Energies, MDPI, vol. 11(2), pages 1-12, February.
    4. Abi Munajad & Cahyo Subroto & Suwarno, 2017. "Study on the Effects of Thermal Aging on Insulating Paper for High Voltage Transformer Composite with Natural Ester from Palm Oil Using Fourier Transform Infrared Spectroscopy (FTIR) and Energy Disper," Energies, MDPI, vol. 10(11), pages 1-15, November.
    5. Janvier Sylvestre N’cho & Issouf Fofana & Yazid Hadjadj & Abderrahmane Beroual, 2016. "Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(5), pages 1-29, May.
    6. Nur Aqilah Mohamad & Norhafiz Azis & Jasronita Jasni & Mohd Zainal Abidin Ab Kadir & Robiah Yunus & Zaini Yaakub, 2018. "Physiochemical and Electrical Properties of Refined, Bleached and Deodorized Palm Oil under High Temperature Ageing for Application in Transformers," Energies, MDPI, vol. 11(6), pages 1-13, June.
    7. Kakou D. Kouassi & Issouf Fofana & Ladji Cissé & Yazid Hadjadj & Kouba M. Lucia Yapi & K. Ambroise Diby, 2018. "Impact of Low Molecular Weight Acids on Oil Impregnated Paper Insulation Degradation," Energies, MDPI, vol. 11(6), pages 1-13, June.
    8. Pawel Rozga & Marcin Stanek & Bartlomiej Pasternak, 2018. "Characteristics of Negative Streamer Development in Ester Liquids and Mineral Oil in a Point-To-Sphere Electrode System with a Pressboard Barrier," Energies, MDPI, vol. 11(5), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:467-:d:72209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.