IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p589-d1044038.html
   My bibliography  Save this article

Design Optimization of a Synchronous Homopolar Motor with Ferrite Magnets for Subway Train

Author

Listed:
  • Vladimir Dmitrievskii

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Vladimir Prakht

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

  • Vadim Kazakbaev

    (Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia)

Abstract

Brushless synchronous homopolar machines (SHM) have long been used as highly reliable motors and generators with an excitation winding on the stator. However, a significant disadvantage that limits their use in traction applications is the reduced specific torque due to the incomplete use of the rotor surface. One possible way to improve the torque density of SHMs is to add inexpensive ferrite magnets in the rotor slots. This paper presents the results of optimizing the performances of an SHM with ferrite magnets for a subway train, considering the timing diagram of train movement. A comparison of its characteristics with an SHM without permanent magnets is also presented. When using the SHM with ferrite magnets, a significant reduction in the dimensions and weight of the motor, as well as power loss, is shown.

Suggested Citation

  • Vladimir Dmitrievskii & Vladimir Prakht & Vadim Kazakbaev, 2023. "Design Optimization of a Synchronous Homopolar Motor with Ferrite Magnets for Subway Train," Mathematics, MDPI, vol. 11(3), pages 1-17, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:589-:d:1044038
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/589/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/589/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vladimir Dmitrievskii & Vladimir Prakht & Alecksey Anuchin & Vadim Kazakbaev, 2021. "Design Optimization of a Traction Synchronous Homopolar Motor," Mathematics, MDPI, vol. 9(12), pages 1-12, June.
    2. Fei Lin & Xuyang Li & Yajie Zhao & Zhongping Yang, 2016. "Control Strategies with Dynamic Threshold Adjustment for Supercapacitor Energy Storage System Considering the Train and Substation Characteristics in Urban Rail Transit," Energies, MDPI, vol. 9(4), pages 1-18, March.
    3. Vladimir Prakht & Vladimir Dmitrievskii & Vadim Kazakbaev & Alecksey Anuchin, 2022. "Comparative Study of Electrically Excited Conventional and Homopolar Synchronous Motors for the Traction Drive of a Mining Dump Truck Operating in a Wide Speed Range in Field-Weakening Region," Mathematics, MDPI, vol. 10(18), pages 1-16, September.
    4. Vladimir Dmitrievskii & Vladimir Prakht & Vadim Kazakbaev & Alecksey Anuchin, 2022. "Comparison of Interior Permanent Magnet and Synchronous Homopolar Motors for a Mining Dump Truck Traction Drive Operated in Wide Constant Power Speed Range," Mathematics, MDPI, vol. 10(9), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yizhi Yan & Haolin Tang & Fan Wu & Rui Wang & Mu Pan, 2017. "One-Step Self-Assembly Synthesis α-Fe 2 O 3 with Carbon-Coated Nanoparticles for Stabilized and Enhanced Supercapacitors Electrode," Energies, MDPI, vol. 10(9), pages 1-13, August.
    2. Timur Yunusov & Maximilian J. Zangs & William Holderbaum, 2017. "Control of Energy Storage," Energies, MDPI, vol. 10(7), pages 1-5, July.
    3. Marcin Szott & Marcin Jarnut & Jacek Kaniewski & Łukasz Pilimon & Szymon Wermiński, 2021. "Fault-Tolerant Control in a Peak-Power Reduction System of a Traction Substation with Multi-String Battery Energy Storage System," Energies, MDPI, vol. 14(15), pages 1-23, July.
    4. Yingshui Sun & Yuxuan Fang & Qiao Zhang & Qing Liu, 2023. "Optimal Design of Marine Motors for Joint Efficiency and Economic Optimization," Energies, MDPI, vol. 16(12), pages 1-19, June.
    5. Flavio Ciccarelli & Luigi Pio Di Noia & Renato Rizzo, 2018. "Integration of Photovoltaic Plants and Supercapacitors in Tramway Power Systems," Energies, MDPI, vol. 11(2), pages 1-14, February.
    6. Vladimir Prakht & Vladimir Dmitrievskii & Vadim Kazakbaev & Alecksey Anuchin, 2022. "Comparative Study of Electrically Excited Conventional and Homopolar Synchronous Motors for the Traction Drive of a Mining Dump Truck Operating in a Wide Speed Range in Field-Weakening Region," Mathematics, MDPI, vol. 10(18), pages 1-16, September.
    7. Zhongping Yang & Zhihong Yang & Huan Xia & Fei Lin & Feiqin Zhu, 2017. "Supercapacitor State Based Control and Optimization for Multiple Energy Storage Devices Considering Current Balance in Urban Rail Transit," Energies, MDPI, vol. 10(4), pages 1-19, April.
    8. Sergio Mayrink & Janaína G. Oliveira & Bruno H. Dias & Leonardo W. Oliveira & Juan S. Ochoa & Gustavo S. Rosseti, 2020. "Regenerative Braking for Energy Recovering in Diesel-Electric Freight Trains: A Technical and Economic Evaluation," Energies, MDPI, vol. 13(4), pages 1-16, February.
    9. Nursaid Polater & Pietro Tricoli, 2022. "Technical Review of Traction Drive Systems for Light Railways," Energies, MDPI, vol. 15(9), pages 1-26, April.
    10. Songlin Guo & Zhengkang Yi & Pan Liu & Guoshuai Wang & Houchuan Lai & Kexun Yu & Xianfei Xie, 2022. "Analysis and Performance Evaluation of a Novel Adjustable Speed Drive with a Homopolar-Type Rotor," Mathematics, MDPI, vol. 10(19), pages 1-16, October.
    11. Ivan Radaš & Ivan Župan & Viktor Šunde & Željko Ban, 2021. "Route Profile Dependent Tram Regenerative Braking Algorithm with Reduced Impact on the Supply Network," Energies, MDPI, vol. 14(9), pages 1-22, April.
    12. Pan, Deng & Zhao, Liting & Luo, Qing & Zhang, Chuansheng & Chen, Zejun, 2018. "Study on the performance improvement of urban rail transit system," Energy, Elsevier, vol. 161(C), pages 1154-1171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:589-:d:1044038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.