IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224008387.html
   My bibliography  Save this article

Optimized scheduling of smart community energy systems considering demand response and shared energy storage

Author

Listed:
  • Hou, Langbo
  • Tong, Xi
  • Chen, Heng
  • Fan, Lanxin
  • Liu, Tao
  • Liu, Wenyi
  • Liu, Tong

Abstract

Integrated energy systems within communities play a pivotal role in addressing the diverse energy requirements of the system, emerging as a central focus in contemporary research. This paper contributes to exploring optimal scheduling in a smart community featuring multiple smart buildings equipped with a substantial share of distributed photovoltaic sources, shared energy storage, and controllable loads. The study formulates a two-stage scheduling optimization model incorporating multiple stakeholders, explicitly examining the game dynamics between the smart community operator and the customer load aggregator. The weights assigned to each optimization objective are determined using an analytic hierarchy process-entropy weight method to establish a balanced and nuanced approach. The ensuing optimal scheduling encompasses unit output and energy trading considerations, focusing on enhancing the system's economic viability, safety measures, and environmental sustainability. A comprehensive evaluation is conducted to validate the proposed model by comparing its performance with alternative operational strategies. The results show that the designed strategy can reduce the operating cost by 40.22% and increase the level of PV consumption by 22.57% compared to the traditional heat-based strategy, which is effective in mitigating power fluctuations, smartly responding to dispatch peak demand, enhancing new energy integration, and ensuring the security of grid operation.

Suggested Citation

  • Hou, Langbo & Tong, Xi & Chen, Heng & Fan, Lanxin & Liu, Tao & Liu, Wenyi & Liu, Tong, 2024. "Optimized scheduling of smart community energy systems considering demand response and shared energy storage," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008387
    DOI: 10.1016/j.energy.2024.131066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Sheng & Wang, Yu & Zhou, Yuyu & Clarke, Leon E. & Edmonds, James A., 2018. "Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints," Applied Energy, Elsevier, vol. 213(C), pages 22-30.
    2. Wei, F. & Jing, Z.X. & Wu, Peter Z. & Wu, Q.H., 2017. "A Stackelberg game approach for multiple energies trading in integrated energy systems," Applied Energy, Elsevier, vol. 200(C), pages 315-329.
    3. Xiang, Yue & Cai, Hanhu & Gu, Chenghong & Shen, Xiaodong, 2020. "Cost-benefit analysis of integrated energy system planning considering demand response," Energy, Elsevier, vol. 192(C).
    4. Lu, Yuehong & Wang, Shengwei & Sun, Yongjun & Yan, Chengchu, 2015. "Optimal scheduling of buildings with energy generation and thermal energy storage under dynamic electricity pricing using mixed-integer nonlinear programming," Applied Energy, Elsevier, vol. 147(C), pages 49-58.
    5. Yang, Shenbo & Tan, Zhongfu & Lin, Hongyu & Li, Peng & De, Gejirifu & Zhou, Feng’ao & Ju, Liwei, 2020. "A two-stage optimization model for Park Integrated Energy System operation and benefit allocation considering the effect of Time-Of-Use energy price," Energy, Elsevier, vol. 195(C).
    6. Heide, Dominik & von Bremen, Lueder & Greiner, Martin & Hoffmann, Clemens & Speckmann, Markus & Bofinger, Stefan, 2010. "Seasonal optimal mix of wind and solar power in a future, highly renewable Europe," Renewable Energy, Elsevier, vol. 35(11), pages 2483-2489.
    7. Zheng, Siqian & Huang, Gongsheng & Lai, Alvin CK., 2021. "Techno-economic performance analysis of synergistic energy sharing strategies for grid-connected prosumers with distributed battery storages," Renewable Energy, Elsevier, vol. 178(C), pages 1261-1278.
    8. Wang, Zaichuang & Chen, Laijun & Li, Xiaozhu & Mei, Shengwei, 2023. "A Nash bargaining model for energy sharing between micro-energy grids and energy storage," Energy, Elsevier, vol. 283(C).
    9. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao & Tang, Bowen, 2017. "Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system," Applied Energy, Elsevier, vol. 190(C), pages 1126-1137.
    10. Zhang, Tianhan & Qiu, Weiqiang & Zhang, Zhi & Lin, Zhenzhi & Ding, Yi & Wang, Yiting & Wang, Lianfang & Yang, Li, 2023. "Optimal bidding strategy and profit allocation method for shared energy storage-assisted VPP in joint energy and regulation markets," Applied Energy, Elsevier, vol. 329(C).
    11. Zheng, Wen & Xu, Xiao & Huang, Yuan & Zhu, Feng & Yang, Yuyan & Liu, Junyong & Hu, Weihao, 2023. "Adaptive robust scheduling optimization of a smart commercial building considering joint energy and reserve markets," Energy, Elsevier, vol. 283(C).
    12. Zhou, Suyang & Sun, Kaiyu & Wu, Zhi & Gu, Wei & Wu, Gaoxiang & Li, Zhe & Li, Junjie, 2020. "Optimized operation method of small and medium-sized integrated energy system for P2G equipment under strong uncertainty," Energy, Elsevier, vol. 199(C).
    13. Kabalci, Yasin, 2016. "A survey on smart metering and smart grid communication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 302-318.
    14. Zhou, Kaile & Wei, Shuyu & Yang, Shanlin, 2019. "Time-of-use pricing model based on power supply chain for user-side microgrid," Applied Energy, Elsevier, vol. 248(C), pages 35-43.
    15. Peplinski, McKenna & Dilkina, Bistra & Chen, Mo & Silva, Sam J. & Ban-Weiss, George A. & Sanders, Kelly T., 2024. "A machine learning framework to estimate residential electricity demand based on smart meter electricity, climate, building characteristics, and socioeconomic datasets," Applied Energy, Elsevier, vol. 357(C).
    16. Eissa, M.M., 2019. "Developing incentive demand response with commercial energy management system (CEMS) based on diffusion model, smart meters and new communication protocol," Applied Energy, Elsevier, vol. 236(C), pages 273-292.
    17. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ke & Ye, Ning & Li, Shuzhen & Wang, Haiyang & Zhang, Chenghui, 2023. "Distributed collaborative operation strategies in multi-agent integrated energy system considering integrated demand response based on game theory," Energy, Elsevier, vol. 273(C).
    2. Yang Yang & Chong Lian & Chao Ma & Yusheng Zhang, 2019. "Research on Energy Storage Optimization for Large-Scale PV Power Stations under Given Long-Distance Delivery Mode," Energies, MDPI, vol. 13(1), pages 1-20, December.
    3. Zhu, Xu & Sun, Yuanzhang & Yang, Jun & Dou, Zhenlan & Li, Gaojunjie & Xu, Chengying & Wen, Yuxin, 2022. "Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses," Energy, Elsevier, vol. 251(C).
    4. Hou, Hui & Ge, Xiangdi & Yan, Yulin & Lu, Yanchao & Zhang, Ji & Dong, Zhao Yang, 2024. "An integrated energy system “green-carbon” offset mechanism and optimization method with Stackelberg game," Energy, Elsevier, vol. 294(C).
    5. Li, Yanxue & Gao, Weijun & Ruan, Yingjun & Ushifusa, Yoshiaki, 2018. "The performance investigation of increasing share of photovoltaic generation in the public grid with pump hydro storage dispatch system, a case study in Japan," Energy, Elsevier, vol. 164(C), pages 811-821.
    6. Lu, Qing & Guo, Qisheng & Zeng, Wei, 2022. "Optimization scheduling of integrated energy service system in community: A bi-layer optimization model considering multi-energy demand response and user satisfaction," Energy, Elsevier, vol. 252(C).
    7. Yang Li & Rongqiang Li & Linjun Shi & Feng Wu & Jianhua Zhou & Jian Liu & Keman Lin, 2023. "Adjustable Capability Evaluation of Integrated Energy Systems Considering Demand Response and Economic Constraints," Energies, MDPI, vol. 16(24), pages 1-24, December.
    8. Zhong, Junjie & Cao, Yijia & Li, Yong & Tan, Yi & Peng, Yanjian & Cao, Lihua & Zeng, Zilong, 2021. "Distributed modeling considering uncertainties for robust operation of integrated energy system," Energy, Elsevier, vol. 224(C).
    9. Gržanić, M. & Capuder, T. & Zhang, N. & Huang, W., 2022. "Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Lyu, Xiangmei & Liu, Tianqi & Liu, Xuan & He, Chuan & Nan, Lu & Zeng, Hong, 2023. "Low-carbon robust economic dispatch of park-level integrated energy system considering price-based demand response and vehicle-to-grid," Energy, Elsevier, vol. 263(PB).
    11. Höltinger, Stefan & Mikovits, Christian & Schmidt, Johannes & Baumgartner, Johann & Arheimer, Berit & Lindström, Göran & Wetterlund, Elisabeth, 2019. "The impact of climatic extreme events on the feasibility of fully renewable power systems: A case study for Sweden," Energy, Elsevier, vol. 178(C), pages 695-713.
    12. Yanbin Li & Yanting Sun & Junjie Zhang & Feng Zhang, 2022. "Optimal Microgrid System Operating Strategy Considering Variable Wind Power Outputs and the Cooperative Game among Subsystem Operators," Energies, MDPI, vol. 15(18), pages 1-20, September.
    13. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    14. Bartlett, Stuart & Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Manso, Pedro & Lehning, Michael, 2018. "Charting the course: A possible route to a fully renewable Swiss power system," Energy, Elsevier, vol. 163(C), pages 942-955.
    15. Yang, Shenbo & Tan, Zhongfu & Lin, Hongyu & Li, Peng & De, Gejirifu & Zhou, Feng’ao & Ju, Liwei, 2020. "A two-stage optimization model for Park Integrated Energy System operation and benefit allocation considering the effect of Time-Of-Use energy price," Energy, Elsevier, vol. 195(C).
    16. Meifang Wei & Youyue Deng & Min Long & Yahui Wang & Yong Li, 2022. "Transaction Model Based on Stackelberg Game Method for Balancing Supply and Demand Sides of Multi-Energy Microgrid," Energies, MDPI, vol. 15(4), pages 1-20, February.
    17. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    18. Yang, Jie & Ma, Tieding & Ma, Kai & Yang, Bo & Guerrero, Josep M. & Liu, Zhixin, 2021. "Trading mechanism and pricing strategy of integrated energy systems based on credit rating and Bayesian game," Energy, Elsevier, vol. 232(C).
    19. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Li, Haoran & Zhang, Chenghui & Sun, Bo, 2022. "Deep integration planning of sustainable energies in district energy system and distributed energy station," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.