IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v150y2021ics0301421521000239.html
   My bibliography  Save this article

Drivers of energy consumption in Kuwaiti buildings: Insights from a hybrid statistical and building performance simulation approach

Author

Listed:
  • Azar, Elie
  • Alaifan, Bader
  • Lin, Min
  • Trepci, Esra
  • El Asmar, Mounir

Abstract

Understanding and quantifying the drivers of energy consumption in buildings is an essential step to identify inefficiencies and guide energy conservation efforts and policies. While such efforts are common in western countries, they remain limited in the Middle East and North Africa (MENA) region, particularly in the State of Kuwait. This article presents the first systematic assessment of the drivers of energy consumption in Kuwaiti commercial and residential buildings. It presents a unique hybrid study approach combining data collected from 463 buildings with Building Performance Simulation (BPS) developed and validated to mimic the performance of archetype (i.e., typical) Kuwaiti buildings. Results identify the built-up area and the thermostat cooling setpoints as the main determinants of electric consumption, quantifying the exact relationships between these variables. For instance, a simple 2 °C increase in the thermostat cooling setpoint can lead to a more than 10% reduction in total energy use. Other parameters that are typically known to affect building performance, such as the type of Air Conditioning (AC) systems installed, did not show statistically significant effects. The findings helped derive important recommendations for the Kuwaiti authorities, covering the educational, technological, and policy-related dimensions of the challenges facing the building sector.

Suggested Citation

  • Azar, Elie & Alaifan, Bader & Lin, Min & Trepci, Esra & El Asmar, Mounir, 2021. "Drivers of energy consumption in Kuwaiti buildings: Insights from a hybrid statistical and building performance simulation approach," Energy Policy, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:enepol:v:150:y:2021:i:c:s0301421521000239
    DOI: 10.1016/j.enpol.2021.112154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521000239
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krarti, Moncef, 2015. "Evaluation of large scale building energy efficiency retrofit program in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1069-1080.
    2. Lopes, M.A.R. & Antunes, C.H. & Martins, N., 2012. "Energy behaviours as promoters of energy efficiency: A 21st century review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4095-4104.
    3. Wood, Michael & Alsayegh, Osamah A., 2014. "Impact of oil prices, economic diversification policies and energy conservation programs on the electricity and water demands in Kuwait," Energy Policy, Elsevier, vol. 66(C), pages 144-156.
    4. Afshin Afshari & Christina Nikolopoulou & Miguel Martin, 2014. "Life-Cycle Analysis of Building Retrofits at the Urban Scale—A Case Study in United Arab Emirates," Sustainability, MDPI, vol. 6(1), pages 1-21, January.
    5. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    6. Attia, Shady & Evrard, Arnaud & Gratia, Elisabeth, 2012. "Development of benchmark models for the Egyptian residential buildings sector," Applied Energy, Elsevier, vol. 94(C), pages 270-284.
    7. Alotaibi, Sorour, 2011. "Energy consumption in Kuwait: Prospects and future approaches," Energy Policy, Elsevier, vol. 39(2), pages 637-643, February.
    8. Azar, Elie & Menassa, Carol C., 2014. "A comprehensive framework to quantify energy savings potential from improved operations of commercial building stocks," Energy Policy, Elsevier, vol. 67(C), pages 459-472.
    9. Li, Xinyi & Yao, Runming & Li, Qin & Ding, Yong & Li, Baizhan, 2018. "An object-oriented energy benchmark for the evaluation of the office building stock," Utilities Policy, Elsevier, vol. 51(C), pages 1-11.
    10. Grimm, Veronika & Kretschmer, Sandra & Mehl, Simon, 2020. "Green innovations: The organizational setup of pilot projects and its influence on consumer perceptions," Energy Policy, Elsevier, vol. 142(C).
    11. Kabalci, Yasin, 2016. "A survey on smart metering and smart grid communication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 302-318.
    12. Li, Cheng & Hong, Tianzhen & Yan, Da, 2014. "An insight into actual energy use and its drivers in high-performance buildings," Applied Energy, Elsevier, vol. 131(C), pages 394-410.
    13. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Xutao & Zhang, Chunfa, 2011. "Sensitivity analysis of optimal model on building cooling heating and power system," Applied Energy, Elsevier, vol. 88(12), pages 5143-5152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wu & Binxia Xue & Yan Song & Xujie Gong & Tao Ma, 2023. "Investigating the Impacts of Urban Built Environment on Travel Energy Consumption: A Case Study of Ningbo, China," Land, MDPI, vol. 12(1), pages 1-19, January.
    2. Radwan A. Almasri & Nidal H. Abu-Hamdeh & Abdullah Alajlan & Yazeed Alresheedi, 2022. "Utilizing a Domestic Water Tank to Make the Air Conditioning System in Residential Buildings More Sustainable in Hot Regions," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    3. Hala Sanboskani & Mounir El Asmar & Elie Azar, 2022. "Green Building Contractors 2025: Analyzing and Forecasting Green Building Contractors’ Market Trends in the US," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    4. Muhammad Imran Khan & Dana I. Al Huneidi & Faisal Asfand & Sami G. Al-Ghamdi, 2023. "Climate Change Implications for Optimal Sizing of Residential Rooftop Solar Photovoltaic Systems in Qatar," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
    5. Shen, Pengyuan & Wang, Huilong, 2024. "Archetype building energy modeling approaches and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    2. Alasseri, Rajeev & Rao, T. Joji & Sreekanth, K.J., 2020. "Institution of incentive-based demand response programs and prospective policy assessments for a subsidized electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    3. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    4. Ardeshir Mahdavi & Christiane Berger & Hadeer Amin & Eleni Ampatzi & Rune Korsholm Andersen & Elie Azar & Verena M. Barthelmes & Matteo Favero & Jakob Hahn & Dolaana Khovalyg & Henrik N. Knudsen & Ale, 2021. "The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality?," Sustainability, MDPI, vol. 13(6), pages 1-44, March.
    5. Alshawaf, Mohammad & Poudineh, Rahmatallah & Alhajeri, Nawaf S., 2020. "Solar PV in Kuwait: The effect of ambient temperature and sandstorms on output variability and uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Azar, Elie & Al Ansari, Hamad, 2017. "Framework to investigate energy conservation motivation and actions of building occupants: The case of a green campus in Abu Dhabi, UAE," Applied Energy, Elsevier, vol. 190(C), pages 563-573.
    7. Alsayegh, Osamah & Saker, Nathalie & Alqattan, Ayman, 2018. "Integrating sustainable energy strategy with the second development plan of Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3430-3440.
    8. Bischof, Julian & Duffy, Aidan, 2022. "Life-cycle assessment of non-domestic building stocks: A meta-analysis of current modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Abdul Conteh & Mohammed Elsayed Lotfy & Kiptoo Mark Kipngetich & Tomonobu Senjyu & Paras Mandal & Shantanu Chakraborty, 2019. "An Economic Analysis of Demand Side Management Considering Interruptible Load and Renewable Energy Integration: A Case Study of Freetown Sierra Leone," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    10. Dmitry A. Ruban & Natalia N. Yashalova, 2022. "Pro-environmental behavior prescribed by top companies of the world," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7918-7935, June.
    11. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    12. Weron, Tomasz & Kowalska-Pyzalska, Anna & Weron, Rafał, 2018. "The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 591-600.
    13. Kolasa, Piotr & Janowski, Mirosław, 2017. "Study of possibilities to store energy virtually in a grid (VESS) with the use of smart metering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1513-1517.
    14. Giovanni Artale & Antonio Cataliotti & Valentina Cosentino & Dario Di Cara & Riccardo Fiorelli & Salvatore Guaiana & Nicola Panzavecchia & Giovanni Tinè, 2019. "A New Coupling Solution for G3-PLC Employment in MV Smart Grids," Energies, MDPI, vol. 12(13), pages 1-23, June.
    15. Hussain, Shahbaz & Hernandez Fernandez, Javier & Al-Ali, Abdulla Khalid & Shikfa, Abdullatif, 2021. "Vulnerabilities and countermeasures in electrical substations," International Journal of Critical Infrastructure Protection, Elsevier, vol. 33(C).
    16. Virkki-Hatakka, Terhi & Luoranen, Mika & Ikävalko, Markku, 2013. "Differences in perception: How the experts look at energy efficiency (findings from a Finnish survey)," Energy Policy, Elsevier, vol. 60(C), pages 499-508.
    17. Brandão de Vasconcelos, Ana & Pinheiro, Manuel Duarte & Manso, Armando & Cabaço, António, 2015. "A Portuguese approach to define reference buildings for cost-optimal methodologies," Applied Energy, Elsevier, vol. 140(C), pages 316-328.
    18. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    19. Yokoyama, Ryohei & Tokunaga, Akira & Wakui, Tetsuya, 2018. "Robust optimal design of energy supply systems under uncertain energy demands based on a mixed-integer linear model," Energy, Elsevier, vol. 153(C), pages 159-169.
    20. Martins, Nuno R. & Carrilho da Graça, Guilherme, 2017. "Impact of outdoor PM2.5 on natural ventilation usability in California’s nondomestic buildings," Applied Energy, Elsevier, vol. 189(C), pages 711-724.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:150:y:2021:i:c:s0301421521000239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.