IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p75-d124985.html
   My bibliography  Save this article

ACT-R Cognitive Model Based Trajectory Planning Method Study for Electric Vehicle’s Active Obstacle Avoidance System

Author

Listed:
  • Aijuan Li

    (School of Automotive Engineering, Shan Dong Jiao Tong University, Jinan 250357, China)

  • Wanzhong Zhao

    (Energy and Power Engineering College, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China)

  • Xibo Wang

    (School of Automotive Engineering, Shan Dong Jiao Tong University, Jinan 250357, China)

  • Xuyun Qiu

    (School of Automotive Engineering, Shan Dong Jiao Tong University, Jinan 250357, China)

Abstract

The active obstacle avoidance system is one of the important components of the electric vehicle active safety system. In order to realize the active obstacle avoidance system driving the vehicle smoothly and without collision in complex road situation, a new dynamical trajectory planning method based on ACT-R (Adaptive Control of Thought-Rational) cognitive model is introduced. Firstly, the ACT-R cognitive architecture is introduced and the trajectory planning method’s framework structure based on ACT-R cognitive model is built. Secondly, the modeling method of ACT-R cognitive model is introduced, the main module of ACT-R cognitive model includes the initialized behavior module, trajectory planning module, estimated behavioral module, and weight adjustment behavior module. Finally, the verification of the trajectory planning method is conducted by the simulation and experiment results. The simulation and experiment results showed that the method of AR (ACT-R) is effective and feasible. The AR method is better than the methods that are based on the OC (Optimal Control) and FN (fuzzy neural network fusion); this paper’s method has more human behavior characteristics and can meet the demand of different constraints.

Suggested Citation

  • Aijuan Li & Wanzhong Zhao & Xibo Wang & Xuyun Qiu, 2018. "ACT-R Cognitive Model Based Trajectory Planning Method Study for Electric Vehicle’s Active Obstacle Avoidance System," Energies, MDPI, vol. 11(1), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:75-:d:124985
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/75/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/75/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiong, Rui & Tian, Jinpeng & Mu, Hao & Wang, Chun, 2017. "A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 372-383.
    2. Xiong, Rui & Cao, Jiayi & Yu, Quanqing, 2018. "Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 211(C), pages 538-548.
    3. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Xiong & Suleiman M. Sharkh & Xi Zhang, 2018. "Research Progress on Electric and Intelligent Vehicles," Energies, MDPI, vol. 11(7), pages 1-5, July.
    2. Chuanyang Sun & Xin Zhang & Lihe Xi & Ying Tian, 2018. "Design of a Path-Tracking Steering Controller for Autonomous Vehicles," Energies, MDPI, vol. 11(6), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zeyu & Xiong, Rui & Lu, Jiahuan & Li, Xinggang, 2018. "Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application," Applied Energy, Elsevier, vol. 213(C), pages 375-383.
    2. Xiong, Rui & Li, Linlin & Li, Zhirun & Yu, Quanqing & Mu, Hao, 2018. "An electrochemical model based degradation state identification method of Lithium-ion battery for all-climate electric vehicles application," Applied Energy, Elsevier, vol. 219(C), pages 264-275.
    3. Hong Zhang & Zhuang Xing & Jiajian Song & Qiangqiang Yang, 2018. "Development and Test Application of an Auxiliary Power-Integrated System," Energies, MDPI, vol. 11(1), pages 1-18, January.
    4. Mingjie Zhao & Junhui Shi & Cheng Lin & Junzhi Zhang, 2018. "Application-Oriented Optimal Shift Schedule Extraction for a Dual-Motor Electric Bus with Automated Manual Transmission," Energies, MDPI, vol. 11(2), pages 1-16, February.
    5. Mingchun Liu & Feihong Gu & Juhua Huang & Changjiang Wang & Ming Cao, 2017. "Integration Design and Optimization Control of a Dynamic Vibration Absorber for Electric Wheels with In-Wheel Motor," Energies, MDPI, vol. 10(12), pages 1-23, December.
    6. Dandan Su & Chengning Zhang & Yugang Dong, 2017. "An Improved Continuous-Time Model Predictive Control of Permanent Magnetic Synchronous Motors for a Wide-Speed Range," Energies, MDPI, vol. 10(12), pages 1-18, December.
    7. Xiaopeng Tang & Ke Yao & Boyang Liu & Wengui Hu & Furong Gao, 2018. "Long-Term Battery Voltage, Power, and Surface Temperature Prediction Using a Model-Based Extreme Learning Machine," Energies, MDPI, vol. 11(1), pages 1-16, January.
    8. Zepeng Gao & Sizhong Chen & Yuzhuang Zhao & Jinrui Nan, 2018. "Height Adjustment of Vehicles Based on a Static Equilibrium Position State Observation Algorithm," Energies, MDPI, vol. 11(2), pages 1-26, February.
    9. Bumin Meng & Yaonan Wang & Jianxu Mao & Jianwen Liu & Guochang Xu & Jian Dai, 2018. "Using SoC Online Correction Method Based on Parameter Identification to Optimize the Operation Range of NI-MH Battery for Electric Boat," Energies, MDPI, vol. 11(3), pages 1-20, March.
    10. Peng Liu & Zhenyu Sun & Zhenpo Wang & Jin Zhang, 2018. "Entropy-Based Voltage Fault Diagnosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 11(1), pages 1-15, January.
    11. Xiong, Rui & Duan, Yanzhou & Cao, Jiayi & Yu, Quanqing, 2018. "Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle," Applied Energy, Elsevier, vol. 217(C), pages 153-165.
    12. Li, Jianwei & Xiong, Rui & Mu, Hao & Cornélusse, Bertrand & Vanderbemden, Philippe & Ernst, Damien & Yuan, Weijia, 2018. "Design and real-time test of a hybrid energy storage system in the microgrid with the benefit of improving the battery lifetime," Applied Energy, Elsevier, vol. 218(C), pages 470-478.
    13. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    14. Xiaogang Wu & Siyu Lv & Jizhong Chen, 2017. "Determination of the Optimum Heat Transfer Coefficient and Temperature Rise Analysis for a Lithium-Ion Battery under the Conditions of Harbin City Bus Driving Cycles," Energies, MDPI, vol. 10(11), pages 1-17, October.
    15. Xiaogang Wu & Wenwen Shi & Jiuyu Du, 2017. "Multi-Objective Optimal Charging Method for Lithium-Ion Batteries," Energies, MDPI, vol. 10(9), pages 1-18, August.
    16. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    17. Mu, Hao & Xiong, Rui & Zheng, Hongfei & Chang, Yuhua & Chen, Zeyu, 2017. "A novel fractional order model based state-of-charge estimation method for lithium-ion battery," Applied Energy, Elsevier, vol. 207(C), pages 384-393.
    18. Hong Zhang & Hang Zhang & Zhuo Wang, 2017. "Effect on Vehicle Turbocharger Exhaust Gas Energy Utilization for the Performance of Centrifugal Compressors under Plateau Conditions," Energies, MDPI, vol. 10(12), pages 1-18, December.
    19. Yan Bao & Yu Luo & Weige Zhang & Mei Huang & Le Yi Wang & Jiuchun Jiang, 2018. "A Bi-Level Optimization Approach to Charging Load Regulation of Electric Vehicle Fast Charging Stations Based on a Battery Energy Storage System," Energies, MDPI, vol. 11(1), pages 1-21, January.
    20. He, Hongwen & Guo, Xiaoguang, 2018. "Multi-objective optimization research on the start condition for a parallel hybrid electric vehicle," Applied Energy, Elsevier, vol. 227(C), pages 294-303.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:75-:d:124985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.