IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3391-d187621.html
   My bibliography  Save this article

Design of ANFIS for Hydrophobicity Classification of Polymeric Insulators with Two-Stage Feature Reduction Technique and Its Field Deployment

Author

Listed:
  • Rajamohan Jayabal

    (Department of Electrical and Electronics Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, India)

  • K. Vijayarekha

    (Department of Electrical and Electronics Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, India)

  • S. Rakesh Kumar

    (Department of Electrical and Electronics Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, India)

Abstract

Hydrophobicity of polymeric insulator plays a vital role in determining the insulation quality in outdoor overhead electrical transmission and distribution lines. Loss of hydrophobicity increases the leakage current and leads to flashover. Monitoring hydrophobicity becomes a fundamental requirement to ensure continuity of power line operations. Hydrophobicity of polymeric insulator is classified according to STRI (Swedish Transmission Research Institute) guidelines. This paper proposes an intelligent ANFIS (Adaptive Neuro-Fuzzy Inference System) based classifier to determine the hydrophobicity quality using the digital image of the insulator. Ten statistical features are extracted from the digital images. Two stages of feature reduction are employed to reduce the number of features. Pre-design stage uses PCA (Principal Component Analysis) and reduces the number of features to six from ten and the post-design stage analyzes the accumulation effect to reduce the number of features to four. Various ANFIS classifiers are trained using these reduced features extracted from the image. The performance of these ANFIS classifiers is evaluated in both field and laboratory specimens. Results indicate classification accuracy of 96.4% and 93.3% during the training and testing phase when triangular membership function with linear output function is employed in ANFIS. A GUI (Graphical User Interface) has also been designed to facilitate the use of the proposed system by field operators.

Suggested Citation

  • Rajamohan Jayabal & K. Vijayarekha & S. Rakesh Kumar, 2018. "Design of ANFIS for Hydrophobicity Classification of Polymeric Insulators with Two-Stage Feature Reduction Technique and Its Field Deployment," Energies, MDPI, vol. 11(12), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3391-:d:187621
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xishan Wen & Xiaoqing Yuan & Lei Lan & Lu Hao & Yu Wang & Shaodong Li & Hailiang Lu & Zhenghong Bao, 2017. "RTV Silicone Rubber Degradation Induced by Temperature Cycling," Energies, MDPI, vol. 10(7), pages 1-12, July.
    2. Muhammad Majid Hussain & Shahab Farokhi & Scott G. McMeekin & Masoud Farzaneh, 2017. "Risk Assessment of Failure of Outdoor High Voltage Polluted Insulators under Combined Stresses Near Shoreline," Energies, MDPI, vol. 10(10), pages 1-13, October.
    3. Petković, Dalibor & Ćojbašić, Žarko & Nikolić, Vlastimir & Shamshirband, Shahaboddin & Mat Kiah, Miss Laiha & Anuar, Nor Badrul & Abdul Wahab, Ainuddin Wahid, 2014. "Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission," Energy, Elsevier, vol. 64(C), pages 868-874.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Yang & Jikai Bi & Yanpeng Hao & Lupeng Nian & Zijun Zhou & Licheng Li & Yifan Liao & Fuzeng Zhang, 2018. "A Recognition Method of the Hydrophobicity Class of Composite Insulators Based on Features Optimization and Experimental Verification," Energies, MDPI, vol. 11(4), pages 1-13, March.
    2. Derafshian, Mehdi & Amjady, Nima, 2015. "Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines," Energy, Elsevier, vol. 84(C), pages 1-14.
    3. Ganjefar, Soheil & Mohammadi, Ali, 2016. "Variable speed wind turbines with maximum power extraction using singular perturbation theory," Energy, Elsevier, vol. 106(C), pages 510-519.
    4. Lin, Zhongwei & Chen, Zhenyu & Liu, Jizhen & Wu, Qiuwei, 2019. "Coordinated mechanical loads and power optimization of wind energy conversion systems with variable-weight model predictive control strategy," Applied Energy, Elsevier, vol. 236(C), pages 307-317.
    5. Dongdong Zhang & Hong Xu & Jin Liu & Chengshun Yang & Xiaoning Huang & Zhijin Zhang & Xingliang Jiang, 2021. "Research on the Non-Contact Pollution Monitoring Method of Composite Insulator Based on Space Electric Field," Energies, MDPI, vol. 14(8), pages 1-15, April.
    6. Yadegaridehkordi, Elaheh & Hourmand, Mehdi & Nilashi, Mehrbakhsh & Shuib, Liyana & Ahani, Ali & Ibrahim, Othman, 2018. "Influence of big data adoption on manufacturing companies' performance: An integrated DEMATEL-ANFIS approach," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 199-210.
    7. Sayyaadi, Hoseyn & Baghsheikhi, Mostafa, 2019. "Retrofit of a steam power plant using the adaptive neuro-fuzzy inference system in response to the load variation," Energy, Elsevier, vol. 175(C), pages 1164-1173.
    8. Xu, Lei & Hou, Lei & Zhu, Zhenyu & Li, Yu & Liu, Jiaquan & Lei, Ting & Wu, Xingguang, 2021. "Mid-term prediction of electrical energy consumption for crude oil pipelines using a hybrid algorithm of support vector machine and genetic algorithm," Energy, Elsevier, vol. 222(C).
    9. Chatterjee, Arunava & Roy, Krishna & Chatterjee, Debashis, 2014. "A Gravitational Search Algorithm (GSA) based Photo-Voltaic (PV) excitation control strategy for single phase operation of three phase wind-turbine coupled induction generator," Energy, Elsevier, vol. 74(C), pages 707-718.
    10. Anicic, Obrad & Jovic, Srdjan, 2016. "Adaptive neuro-fuzzy approach for ducted tidal turbine performance estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1111-1116.
    11. Shamshirband, Shahaboddin & Petković, Dalibor & Amini, Amineh & Anuar, Nor Badrul & Nikolić, Vlastimir & Ćojbašić, Žarko & Mat Kiah, Miss Laiha & Gani, Abdullah, 2014. "Support vector regression methodology for wind turbine reaction torque prediction with power-split hydrostatic continuous variable transmission," Energy, Elsevier, vol. 67(C), pages 623-630.
    12. Kim, Dongwoo & Song, Kang Sub & Lim, Junyub & Kim, Yongchan, 2018. "Analysis of two-phase injection heat pump using artificial neural network considering APF and LCCP under various weather conditions," Energy, Elsevier, vol. 155(C), pages 117-127.
    13. Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.
    14. Dai, Juchuan & Liu, Deshun & Wen, Li & Long, Xin, 2016. "Research on power coefficient of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 86(C), pages 206-215.
    15. Neshat, Mehdi & Nezhad, Meysam Majidi & Abbasnejad, Ehsan & Mirjalili, Seyedali & Groppi, Daniele & Heydari, Azim & Tjernberg, Lina Bertling & Astiaso Garcia, Davide & Alexander, Bradley & Shi, Qinfen, 2021. "Wind turbine power output prediction using a new hybrid neuro-evolutionary method," Energy, Elsevier, vol. 229(C).
    16. Wang, Feng & Chen, Jincheng & Xu, Bing & Stelson, Kim A., 2019. "Improving the reliability and energy production of large wind turbine with a digital hydrostatic drivetrain," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Seixas, M. & Melício, R. & Mendes, V.M.F., 2014. "Offshore wind turbine simulation: Multibody drive train. Back-to-back NPC (neutral point clamped) converters. Fractional-order control," Energy, Elsevier, vol. 69(C), pages 357-369.
    18. Igor Mladenović & Miloš Milovančević & Svetlana Sokolov-Mladenović, 2017. "RETRACTED ARTICLE: Analyzing of innovations influence on economic growth by fuzzy system," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1297-1304, May.
    19. Song, Ziyou & Hou, Jun & Xu, Shaobing & Ouyang, Minggao & Li, Jianqiu, 2017. "The influence of driving cycle characteristics on the integrated optimization of hybrid energy storage system for electric city buses," Energy, Elsevier, vol. 135(C), pages 91-100.
    20. Muhammad Majid Hussain & Muhammad Akmal Chaudhary & Abdul Razaq, 2019. "Mechanism of Saline Deposition and Surface Flashover on High-Voltage Insulators near Shoreline: Mathematical Models and Experimental Validations," Energies, MDPI, vol. 12(19), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3391-:d:187621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.