IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2459-d170194.html
   My bibliography  Save this article

Estimation of the Hydrophobicity of a Composite Insulator Based on an Improved Probabilistic Neural Network

Author

Listed:
  • Qiuqin Sun

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
    State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Fei Lin

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Weitao Yan

    (State Grid Hunan Maintenance Company, Changsha 410000, China)

  • Feng Wang

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • She Chen

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Lipeng Zhong

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

Abstract

The estimation of hydrophobicity for composite insulators is of great importance for the purpose of predicting the surface degradation. The hydrophobic image is firstly decomposed by the 2-level wavelet, along with the multi-Retinex algorithm in this paper. The processed low frequency sub-band and high frequency sub-band images are then reconstructed. The 3 × 3 Sobel operator is performed to measure the basic spatial gradient in four directions, including the horizontal direction, the diagonal direction, and then the vertical direction. The shape factor, the area ratio of the largest water droplet, and the coverage rate of the water droplet are selected as the feature parameters and input into the classification network that has been trained to do the hydrophobic level recognition. The effect of the different expansion speed on the desired learning results is discussed. The threshold plays a key role in image processing. Considering that the difference between the water droplet edge and the composite insulator surface is relatively small, the asymptotic semi-soft threshold function is used in pretreatment, whereas the adaptive two-dimensional Otsu’s method is used in image segmentation. The experimental results show that the proposed method has high recognition accuracy up to 94.8% for a diversity of images, and it is superior to the improved Shape Factor Method, the Multi-fractal Method, and the RBF Neural Network.

Suggested Citation

  • Qiuqin Sun & Fei Lin & Weitao Yan & Feng Wang & She Chen & Lipeng Zhong, 2018. "Estimation of the Hydrophobicity of a Composite Insulator Based on an Improved Probabilistic Neural Network," Energies, MDPI, vol. 11(9), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2459-:d:170194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2459/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2459/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin Yang & Jikai Bi & Yanpeng Hao & Lupeng Nian & Zijun Zhou & Licheng Li & Yifan Liao & Fuzeng Zhang, 2018. "A Recognition Method of the Hydrophobicity Class of Composite Insulators Based on Features Optimization and Experimental Verification," Energies, MDPI, vol. 11(4), pages 1-13, March.
    2. Muhammad Majid Hussain & Shahab Farokhi & Scott G. McMeekin & Masoud Farzaneh, 2017. "Risk Assessment of Failure of Outdoor High Voltage Polluted Insulators under Combined Stresses Near Shoreline," Energies, MDPI, vol. 10(10), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongdong Zhang & Hong Xu & Jin Liu & Chengshun Yang & Xiaoning Huang & Zhijin Zhang & Xingliang Jiang, 2021. "Research on the Non-Contact Pollution Monitoring Method of Composite Insulator Based on Space Electric Field," Energies, MDPI, vol. 14(8), pages 1-15, April.
    2. Rajamohan Jayabal & K. Vijayarekha & S. Rakesh Kumar, 2018. "Design of ANFIS for Hydrophobicity Classification of Polymeric Insulators with Two-Stage Feature Reduction Technique and Its Field Deployment," Energies, MDPI, vol. 11(12), pages 1-16, December.
    3. Muhammad Majid Hussain & Muhammad Akmal Chaudhary & Abdul Razaq, 2019. "Mechanism of Saline Deposition and Surface Flashover on High-Voltage Insulators near Shoreline: Mathematical Models and Experimental Validations," Energies, MDPI, vol. 12(19), pages 1-20, September.
    4. Mohamed Lamine Amrani & Slimane Bouazabia & Issouf Fofana & Fethi Meghnefi & Marouane Jabbari & Djazia Khelil & Amina Boudiaf, 2021. "Modelling Surface Electric Discharge Propagation on Polluted Insulators under AC Voltage," Energies, MDPI, vol. 14(20), pages 1-15, October.
    5. Arshad & Jawad Ahmad & Ahsen Tahir & Brian G. Stewart & Azam Nekahi, 2020. "Forecasting Flashover Parameters of Polymeric Insulators under Contaminated Conditions Using the Machine Learning Technique," Energies, MDPI, vol. 13(15), pages 1-16, July.
    6. Lin Yang & Jikai Bi & Yanpeng Hao & Lupeng Nian & Zijun Zhou & Licheng Li & Yifan Liao & Fuzeng Zhang, 2018. "A Recognition Method of the Hydrophobicity Class of Composite Insulators Based on Features Optimization and Experimental Verification," Energies, MDPI, vol. 11(4), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2459-:d:170194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.