IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v59y2016icp1111-1116.html
   My bibliography  Save this article

Adaptive neuro-fuzzy approach for ducted tidal turbine performance estimation

Author

Listed:
  • Anicic, Obrad
  • Jovic, Srdjan

Abstract

The potential of marine power to produce electricity has been exploited recently. One of the ways of producing electricity is by using tidal current turbines. In this study, the hydrodynamic performance of a novel type of ducted tidal turbine was investigated. Tidal energy has become a large contender of traditional fossil fuel energy, particularly with the successful operation of multi-megawatt sized tidal turbines. Hence, quality of produced energy becomes an important problem in tidal energy conversion plants. Several control techniques have been applied to improve the quality of power generated from tidal turbines. In this study, the adaptive neuro-fuzzy inference system (ANFIS) is designed and adapted to estimate power coefficient value of the ducted tidal turbines. The back propagation learning algorithm is used for training this network. This intelligent controller is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

Suggested Citation

  • Anicic, Obrad & Jovic, Srdjan, 2016. "Adaptive neuro-fuzzy approach for ducted tidal turbine performance estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1111-1116.
  • Handle: RePEc:eee:rensus:v:59:y:2016:i:c:p:1111-1116
    DOI: 10.1016/j.rser.2016.01.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116000617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.01.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Bo & Lawn, Chris, 2011. "Fluid dynamic performance of a vertical axis turbine for tidal currents," Renewable Energy, Elsevier, vol. 36(12), pages 3355-3366.
    2. Mohandes, M. & Rehman, S. & Rahman, S.M., 2011. "Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)," Applied Energy, Elsevier, vol. 88(11), pages 4024-4032.
    3. No, T.S. & Kim, J.-E. & Moon, J.H. & Kim, S.J., 2009. "Modeling, control, and simulation of dual rotor wind turbine generator system," Renewable Energy, Elsevier, vol. 34(10), pages 2124-2132.
    4. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang, 2010. "Hydrodynamic impact of a tidal barrage in the Severn Estuary, UK," Renewable Energy, Elsevier, vol. 35(7), pages 1455-1468.
    5. Bououden, S. & Chadli, M. & Filali, S. & El Hajjaji, A., 2012. "Fuzzy model based multivariable predictive control of a variable speed wind turbine: LMI approach," Renewable Energy, Elsevier, vol. 37(1), pages 434-439.
    6. Rocha, Ronilson, 2011. "A sensorless control for a variable speed wind turbine operating at partial load," Renewable Energy, Elsevier, vol. 36(1), pages 132-141.
    7. Aslam Bhutta, Muhammad Mahmood & Hayat, Nasir & Farooq, Ahmed Uzair & Ali, Zain & Jamil, Sh. Rehan & Hussain, Zahid, 2012. "Vertical axis wind turbine – A review of various configurations and design techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1926-1939.
    8. Tan, Wen-Shan & Hassan, Mohammad Yusri & Majid, Md Shah & Abdul Rahman, Hasimah, 2013. "Optimal distributed renewable generation planning: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 626-645.
    9. Petković, Dalibor & Ćojbašič, Žarko & Nikolić, Vlastimir, 2013. "Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 191-195.
    10. Petković, Dalibor & Ćojbašić, Žarko & Nikolić, Vlastimir & Shamshirband, Shahaboddin & Mat Kiah, Miss Laiha & Anuar, Nor Badrul & Abdul Wahab, Ainuddin Wahid, 2014. "Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission," Energy, Elsevier, vol. 64(C), pages 868-874.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    2. Ibrahim, Thamir k. & Mohammed, Mohammed Kamil & Awad, Omar I. & Rahman, M.M. & Najafi, G. & Basrawi, Firdaus & Abd Alla, Ahmed N. & Mamat, Rizalman, 2017. "The optimum performance of the combined cycle power plant: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 459-474.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    2. Petković, Dalibor & Ćojbašič, Žarko & Nikolić, Vlastimir, 2013. "Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 191-195.
    3. Shamshirband, Shahaboddin & Keivani, Afram & Mohammadi, Kasra & Lee, Malrey & Hamid, Siti Hafizah Abd & Petkovic, Dalibor, 2016. "Assessing the proficiency of adaptive neuro-fuzzy system to estimate wind power density: Case study of Aligoodarz, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 429-435.
    4. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    5. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    6. Yadegaridehkordi, Elaheh & Hourmand, Mehdi & Nilashi, Mehrbakhsh & Shuib, Liyana & Ahani, Ali & Ibrahim, Othman, 2018. "Influence of big data adoption on manufacturing companies' performance: An integrated DEMATEL-ANFIS approach," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 199-210.
    7. Xu, Lei & Hou, Lei & Zhu, Zhenyu & Li, Yu & Liu, Jiaquan & Lei, Ting & Wu, Xingguang, 2021. "Mid-term prediction of electrical energy consumption for crude oil pipelines using a hybrid algorithm of support vector machine and genetic algorithm," Energy, Elsevier, vol. 222(C).
    8. Shamshirband, Shahaboddin & Petković, Dalibor & Amini, Amineh & Anuar, Nor Badrul & Nikolić, Vlastimir & Ćojbašić, Žarko & Mat Kiah, Miss Laiha & Gani, Abdullah, 2014. "Support vector regression methodology for wind turbine reaction torque prediction with power-split hydrostatic continuous variable transmission," Energy, Elsevier, vol. 67(C), pages 623-630.
    9. Kim, Dongwoo & Song, Kang Sub & Lim, Junyub & Kim, Yongchan, 2018. "Analysis of two-phase injection heat pump using artificial neural network considering APF and LCCP under various weather conditions," Energy, Elsevier, vol. 155(C), pages 117-127.
    10. Neshat, Mehdi & Nezhad, Meysam Majidi & Abbasnejad, Ehsan & Mirjalili, Seyedali & Groppi, Daniele & Heydari, Azim & Tjernberg, Lina Bertling & Astiaso Garcia, Davide & Alexander, Bradley & Shi, Qinfen, 2021. "Wind turbine power output prediction using a new hybrid neuro-evolutionary method," Energy, Elsevier, vol. 229(C).
    11. Wang, Feng & Chen, Jincheng & Xu, Bing & Stelson, Kim A., 2019. "Improving the reliability and energy production of large wind turbine with a digital hydrostatic drivetrain," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Yaïci, Wahiba & Entchev, Evgueniy, 2016. "Adaptive Neuro-Fuzzy Inference System modelling for performance prediction of solar thermal energy system," Renewable Energy, Elsevier, vol. 86(C), pages 302-315.
    13. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    14. Shamshirband, Shahaboddin & Petković, Dalibor & Anuar, Nor Badrul & Gani, Abdullah, 2014. "Adaptive neuro-fuzzy generalization of wind turbine wake added turbulence models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 270-276.
    15. Chan, C.M. & Bai, H.L. & He, D.Q., 2018. "Blade shape optimization of the Savonius wind turbine using a genetic algorithm," Applied Energy, Elsevier, vol. 213(C), pages 148-157.
    16. Ahuja, Anjali & Jain, Anamika & Jain, Madhu, 2022. "Transient analysis and ANFIS computing of unreliable single server queueing model with multiple stage service and functioning vacation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 464-490.
    17. Govind, Bala, 2017. "Increasing the operational capability of a horizontal axis wind turbine by its integration with a vertical axis wind turbine," Applied Energy, Elsevier, vol. 199(C), pages 479-494.
    18. Bertašienė, Agnė & Azzopardi, Brian, 2015. "Synergies of Wind Turbine control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 336-342.
    19. Christoph M. Hackl & Pol Jané-Soneira & Martin Pfeifer & Korbinian Schechner & Sören Hohmann, 2018. "Full- and Reduced-Order State-Space Modeling of Wind Turbine Systems with Permanent Magnet Synchronous Generator," Energies, MDPI, vol. 11(7), pages 1-33, July.
    20. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang & Tan, Guangming, 2012. "Estimation of annual energy output from a tidal barrage using two different methods," Applied Energy, Elsevier, vol. 93(C), pages 327-336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:59:y:2016:i:c:p:1111-1116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.