IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3292-d185463.html
   My bibliography  Save this article

Stabilization of High-Organic-Content Water Treatment Sludge by Pyrolysis

Author

Listed:
  • Ye-Eun Lee

    (Division of Environment and Plant Engineering, Korea Institute of Civil Engineering and Building Technology 283, Goyang- daero, Ilsanseo-gu Goyang-si, Gyeonggi-do 10223, Republic of Korea
    Department of Construction Environment Engineering, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea)

  • I-Tae Kim

    (Division of Environment and Plant Engineering, Korea Institute of Civil Engineering and Building Technology 283, Goyang- daero, Ilsanseo-gu Goyang-si, Gyeonggi-do 10223, Republic of Korea)

  • Yeong-Seok Yoo

    (Division of Environment and Plant Engineering, Korea Institute of Civil Engineering and Building Technology 283, Goyang- daero, Ilsanseo-gu Goyang-si, Gyeonggi-do 10223, Republic of Korea)

Abstract

Water treatment sludge from algal blooms were analyzed and compared with general water treatment sludge as the pyrolysis temperature was varied from 300 °C to 900° C. Elemental analysis showed that the water treatment sludge in the eutrophication region has ~12% carbon content, higher than that (8.75%) of general water treatment sludge. X-ray diffraction (XRD) analysis of both types of sludge showed that amorphous silica changed to quartz and weak crystalline structures like kaolinite or montmorillonite were decomposed and changed into stronger crystalline forms like albite. Fourier transform infrared spectroscopy (FT-IR) peaks of humic/fulvic acid that indicated the affinity to combine with heavy metals disappeared above 700 °C. Toxicity characteristic leaching procedure (TCLP), conducted to determine the heavy metal leaching amount of pyrolyzed water treatment sludge, showed the lowest value of 5.7 mg/kg at 500 °C when the humic acid was not decomposed. At 500 °C, the heavy metal leaching ratio to the heavy metal content of high organic content water treatment sludge and low organic content water treatment sludge were 1.87% and 3.19%, respectively, and the water treatment sludge of higher organic content was more stable. In other words, pyrolysis of water treatment sludge with high organic content at 500 °C increases the inorganic matter crystallinity and heavy metal leaching stability.

Suggested Citation

  • Ye-Eun Lee & I-Tae Kim & Yeong-Seok Yoo, 2018. "Stabilization of High-Organic-Content Water Treatment Sludge by Pyrolysis," Energies, MDPI, vol. 11(12), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3292-:d:185463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3292/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3292/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chamseddine Guizani & Mejdi Jeguirim & Sylvie Valin & Lionel Limousy & Sylvain Salvador, 2017. "Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity," Energies, MDPI, vol. 10(6), pages 1-18, June.
    2. Johannes Lehmann, 2007. "A handful of carbon," Nature, Nature, vol. 447(7141), pages 143-144, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jumoke Oladejo & Kaiqi Shi & Xiang Luo & Gang Yang & Tao Wu, 2018. "A Review of Sludge-to-Energy Recovery Methods," Energies, MDPI, vol. 12(1), pages 1-38, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi-Xiang Zhao & Na Ta & Xu-Dong Wang, 2017. "Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material," Energies, MDPI, vol. 10(9), pages 1-15, August.
    2. Ye-Eun Lee & Jun-Ho Jo & I-Tae Kim & Yeong-Seok Yoo, 2017. "Chemical Characteristics and NaCl Component Behavior of Biochar Derived from the Salty Food Waste by Water Flushing," Energies, MDPI, vol. 10(10), pages 1-15, October.
    3. Xia Liu & Juntao Wei & Wei Huo & Guangsuo Yu, 2017. "Gasification under CO 2 –Steam Mixture: Kinetic Model Study Based on Shared Active Sites," Energies, MDPI, vol. 10(11), pages 1-10, November.
    4. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    5. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    6. Daniele Basso & Elsa Weiss-Hortala & Francesco Patuzzi & Marco Baratieri & Luca Fiori, 2018. "In Deep Analysis on the Behavior of Grape Marc Constituents during Hydrothermal Carbonization," Energies, MDPI, vol. 11(6), pages 1-19, May.
    7. Zouhair Elkhlifi & Jerosha Iftikhar & Mohammad Sarraf & Baber Ali & Muhammad Hamzah Saleem & Irshad Ibranshahib & Mozart Daltro Bispo & Lucas Meili & Sezai Ercisli & Ehlinaz Torun Kayabasi & Naser Ale, 2023. "Potential Role of Biochar on Capturing Soil Nutrients, Carbon Sequestration and Managing Environmental Challenges: A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    8. Mathews, John A., 2008. "Carbon-negative biofuels," Energy Policy, Elsevier, vol. 36(3), pages 940-945, March.
    9. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    10. Sriphirom, Patikorn & Rossopa, Benjamas, 2023. "Assessment of greenhouse gas mitigation from rice cultivation using alternate wetting and drying and rice straw biochar in Thailand," Agricultural Water Management, Elsevier, vol. 290(C).
    11. Kanbur, Ravi & Leard, Benjamin & Bento, Antonio, 2012. "Super-Additionality: A Neglected Force in Markets for Carbon Offsets," CEPR Discussion Papers 8952, C.E.P.R. Discussion Papers.
    12. Gyeong-Min Kim & Dae-Gyun Lee & Chung-Hwan Jeon, 2019. "Fundamental Characteristics and Kinetic Analysis of Lignocellulosic Woody and Herbaceous Biomass Fuels," Energies, MDPI, vol. 12(6), pages 1-16, March.
    13. Huang, Yu-Fong & Chiueh, Pei-Te & Shih, Chun-Hao & Lo, Shang-Lien & Sun, Liping & Zhong, Yuan & Qiu, Chunsheng, 2015. "Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture," Energy, Elsevier, vol. 84(C), pages 75-82.
    14. Waheed A. Rasaq & Mateusz Golonka & Miklas Scholz & Andrzej Białowiec, 2021. "Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review," Energies, MDPI, vol. 14(17), pages 1-20, August.
    15. Chih-Chun Kung & Bruce A. McCarl & Chi-Chung Chen, 2014. "An Environmental and Economic Evaluation of Pyrolysis for Energy Generation in Taiwan with Endogenous Land Greenhouse Gases Emissions," IJERPH, MDPI, vol. 11(3), pages 1-19, March.
    16. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Mehnaz Mosharrof, 2021. "Biochar with Alternate Wetting and Drying Irrigation: A Potential Technique for Paddy Soil Management," Agriculture, MDPI, vol. 11(4), pages 1-35, April.
    17. Amna Abdeljaoued & Nausika Querejeta & Inés Durán & Noelia Álvarez-Gutiérrez & Covadonga Pevida & Mohamed Hachemi Chahbani, 2018. "Preparation and Evaluation of a Coconut Shell-Based Activated Carbon for CO 2 /CH 4 Separation," Energies, MDPI, vol. 11(7), pages 1-14, July.
    18. Sarah A. Doydora & Miguel L. Cabrera & Keshav C. Das & Julia W. Gaskin & Leticia S. Sonon & William P. Miller, 2011. "Release of Nitrogen and Phosphorus from Poultry Litter Amended with Acidified Biochar," IJERPH, MDPI, vol. 8(5), pages 1-12, May.
    19. Juan Luis Aguirre & Sergio González-Egido & María González-Lucas & Francisco Miguel González-Pernas, 2023. "Medium-Term Effects and Economic Analysis of Biochar Application in Three Mediterranean Crops," Energies, MDPI, vol. 16(10), pages 1-18, May.
    20. Besma Khiari & Mejdi Jeguirim, 2018. "Pyrolysis of Grape Marc from Tunisian Wine Industry: Feedstock Characterization, Thermal Degradation and Kinetic Analysis," Energies, MDPI, vol. 11(4), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3292-:d:185463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.