IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i4p367-d538646.html
   My bibliography  Save this article

Biochar with Alternate Wetting and Drying Irrigation: A Potential Technique for Paddy Soil Management

Author

Listed:
  • Ahmad Numery Ashfaqul Haque

    (Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
    Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh 2202, Bangladesh)

  • Md. Kamal Uddin

    (Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Muhammad Firdaus Sulaiman

    (Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Adibah Mohd Amin

    (Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Mahmud Hossain

    (Department of Soil Science, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh)

  • Zakaria M. Solaiman

    (UWA School of Agriculture and Environment, and the UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia)

  • Mehnaz Mosharrof

    (Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

Abstract

Over half of the world’s population depends on rice for its calorie supply, although it consumes the highest amount of water compared to other major crops. To minimize this excess water usage, alternate wetting and drying (AWD) irrigation practice is considered as an efficient technique in which soil intermittently dried during the growing period of rice by maintaining yield compared to a flooded system. Continuous AWD may result in poor soil health caused by carbon loss, nutrient depletion, cracking, and affecting soil physical properties. Due to being a potential organic amendment, biochar has a great scope to overcome these problems by improving soil’s physicochemical properties. Biochar is a carbon enriched highly porous material and characterized by several functional groups on its large surface area and full of nutrients. However, biochar’s implication for sustaining soil physicochemical and water retention properties in the AWD irrigation systems has not been widely discussed. This paper reviews the adverse impacts of AWD irrigation on soil structure and C, N depletion; the potential of biochar to mitigate this problem and recovering soil productivity; its influence on improving soil physical properties and moisture retention; and the scope of future study. This review opined that biochar efficiently retains nutrients and supplies as a slow-release fertilizer, which may restrict preferential nutrient loss through soil cracks under AWD. It also improves soil’s physical properties, slows cracking during drying cycles, and enhances water retention by storing moisture within its internal pores. However, long-term field studies are scarce; additionally, economic evaluation is required to confirm the extent of biochar impact.

Suggested Citation

  • Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Mehnaz Mosharrof, 2021. "Biochar with Alternate Wetting and Drying Irrigation: A Potential Technique for Paddy Soil Management," Agriculture, MDPI, vol. 11(4), pages 1-35, April.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:4:p:367-:d:538646
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/4/367/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/4/367/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sepaskhah, A.R. & Barzegar, M., 2010. "Yield, water and nitrogen-use response of rice to zeolite and nitrogen fertilization in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 98(1), pages 38-44, December.
    2. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    3. Bouman, B.A.M. & Hengsdijk, H. & Hardy, B. & Bindraban, P.S. & Tuong, T.P. & Ladha, J.K., 2002. "Water-wise Rice Production," IRRI Books, International Rice Research Institute (IRRI), number 281822.
    4. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Syaharudin Zaibon & Mehnaz Mosharrof, 2021. "Assessing the Increase in Soil Moisture Storage Capacity and Nutrient Enhancement of Different Organic Amendments in Paddy Soil," Agriculture, MDPI, vol. 11(1), pages 1-15, January.
    5. Mehnaz Mosharrof & Md. Kamal Uddin & Shamshuddin Jusop & Muhammad Firdaus Sulaiman & S. M. Shamsuzzaman & Ahmad Numery Ashfaqul Haque, 2021. "Changes in Acidic Soil Chemical Properties and Carbon Dioxide Emission Due to Biochar and Lime Treatments," Agriculture, MDPI, vol. 11(3), pages 1-20, March.
    6. Garg, Kaushal K. & Das, Bhabani S. & Safeeq, Mohammad & Bhadoria, Pratap B.S., 2009. "Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport," Agricultural Water Management, Elsevier, vol. 96(12), pages 1705-1714, December.
    7. Zakaria M. Solaiman & Muhammad Izhar Shafi & Euan Beamont & Hossain M. Anawar, 2020. "Poultry Litter Biochar Increases Mycorrhizal Colonisation, Soil Fertility and Cucumber Yield in a Fertigation System on Sandy Soil," Agriculture, MDPI, vol. 10(10), pages 1-14, October.
    8. Johannes Lehmann, 2007. "A handful of carbon," Nature, Nature, vol. 447(7141), pages 143-144, May.
    9. Barton, Louise & Colmer, Timothy D., 2006. "Irrigation and fertiliser strategies for minimising nitrogen leaching from turfgrass," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 160-175, February.
    10. Zhonglu Guo & Lichao Zhang & Wei Yang & Li Hua & Chongfa Cai, 2019. "Aggregate Stability under Long-Term Fertilization Practices: The Case of Eroded Ultisols of South-Central China," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Mehnaz Mosharrof, 2022. "Rice Growth Performance, Nutrient Use Efficiency and Changes in Soil Properties Influenced by Biochar under Alternate Wetting and Drying Irrigation," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    2. Wei Qi & Ce Wang & Zhanyu Zhang & Mingyi Huang & Jiahui Xu, 2022. "Experimental Investigation on the Impact of Drying–Wetting Cycles on the Shrink–Swell Behavior of Clay Loam in Farmland," Agriculture, MDPI, vol. 12(2), pages 1-15, February.
    3. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Azharuddin Abd Aziz & Mehnaz Mosharrof, 2022. "Combined Use of Biochar with 15 Nitrogen Labelled Urea Increases Rice Yield, N Use Efficiency and Fertilizer N Recovery under Water-Saving Irrigation," Sustainability, MDPI, vol. 14(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Azharuddin Abd Aziz & Mehnaz Mosharrof, 2022. "Combined Use of Biochar with 15 Nitrogen Labelled Urea Increases Rice Yield, N Use Efficiency and Fertilizer N Recovery under Water-Saving Irrigation," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    2. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Syaharudin Zaibon & Mehnaz Mosharrof, 2021. "Assessing the Increase in Soil Moisture Storage Capacity and Nutrient Enhancement of Different Organic Amendments in Paddy Soil," Agriculture, MDPI, vol. 11(1), pages 1-15, January.
    3. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    4. Mehnaz Mosharrof & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Shamim Mia & Shordar M. Shamsuzzaman & Ahmad Numery Ashfaqul Haque, 2021. "Combined Application of Rice Husk Biochar and Lime Increases Phosphorus Availability and Maize Yield in an Acidic Soil," Agriculture, MDPI, vol. 11(8), pages 1-21, August.
    5. Patel, D.P. & Das, Anup & Munda, G.C. & Ghosh, P.K. & Bordoloi, Juri Sandhya & Kumar, Manoj, 2010. "Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem," Agricultural Water Management, Elsevier, vol. 97(9), pages 1269-1276, September.
    6. Dasgupta, Pragna & Das, Bhabani S. & Sen, Soumitra K., 2015. "Soil water potential and recoverable water stress in drought tolerant and susceptible rice varieties," Agricultural Water Management, Elsevier, vol. 152(C), pages 110-118.
    7. Rodgers, Charles & Hellegers, Petra J.G.J., 2005. "Water pricing and valuation in Indonesia: case study of the Brantas River Basin," EPTD discussion papers 141, International Food Policy Research Institute (IFPRI).
    8. Zheng, Junlin & Chen, Taotao & Wu, Qi & Yu, Jianming & Chen, Wei & Chen, Yinglong & Siddique, Kadambot H.M. & Meng, Weizhong & Chi, Daocai & Xia, Guimin, 2018. "Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress," Agricultural Water Management, Elsevier, vol. 206(C), pages 241-251.
    9. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    10. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.
    11. Xiaoguang, Yang & Bouman, B.A.M. & Huaqi, Wang & Zhimin, Wang & Junfang, Zhao & Bin, Chen, 2005. "Performance of temperate aerobic rice under different water regimes in North China," Agricultural Water Management, Elsevier, vol. 74(2), pages 107-122, June.
    12. Bouman, Bas A. M. & Barker, Randolph & Humphreys, E. & Tuong, T. P. & Atlin, G. & Bennett, John & Dawe, D. & Dittert, K. & Dobermann, A. & Facon, Thierry & Fujimoto, N. & Gupta, R. & Haefele, S. & Hos, 2007. "Rice: feeding the billions," Book Chapters,, International Water Management Institute.
      • Bouman, B. & Barker, R. & Humphreys, E. & Tuong, T. P. & Atlin, G. & Bennett, J. & Dawe, D. & Dittert, K. & Dobermann, A. & Facon, T. & Fujimoto, N. & Gupta, R. & Haefele, S. & Hosen, Y. & Ismail, A. , 2007. "Rice: feeding the billions," IWMI Books, Reports H040206, International Water Management Institute.
    13. Darzi-Naftchali, Abdullah & Mirlatifi, Seyed Majid & Shahnazari, Ali & Ejlali, Farid & Mahdian, Mohammad Hossein, 2013. "Effect of subsurface drainage on water balance and water table in poorly drained paddy fields," Agricultural Water Management, Elsevier, vol. 130(C), pages 61-68.
    14. Bouman, B. A.M., 2007. "A conceptual framework for the improvement of crop water productivity at different spatial scales," Agricultural Systems, Elsevier, vol. 93(1-3), pages 43-60, March.
    15. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Mehnaz Mosharrof, 2022. "Rice Growth Performance, Nutrient Use Efficiency and Changes in Soil Properties Influenced by Biochar under Alternate Wetting and Drying Irrigation," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    16. Mehnaz Mosharrof & Md. Kamal Uddin & Shamim Mia & Muhammad Firdaus Sulaiman & Shordar M. Shamsuzzaman & Ahmad Numery Ashfaqul Haque, 2022. "Influence of Rice Husk Biochar and Lime in Reducing Phosphorus Application Rate in Acid Soil: A Field Trial with Maize," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
    17. Tan, Xuezhi & Shao, Dongguo & Liu, Huanhuan, 2014. "Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 132(C), pages 69-78.
    18. Darzi-Naftchali, Abdullah & Karandish, Fatemeh & Šimůnek, Jiří, 2018. "Numerical modeling of soil water dynamics in subsurface drained paddies with midseason drainage or alternate wetting and drying management," Agricultural Water Management, Elsevier, vol. 197(C), pages 67-78.
    19. Choudhury, B.U. & Singh, Anil Kumar, 2016. "Estimation of crop coefficient of irrigated transplanted puddled rice by field scale water balance in the semi-arid Indo-Gangetic Plains, India," Agricultural Water Management, Elsevier, vol. 176(C), pages 142-150.
    20. Feng, Liping & Bouman, B. A.M. & Tuong, T.P. & Cabangon, R.J. & Li, Yalong & Lu, Guoan & Feng, Yuehua, 2007. "Exploring options to grow rice using less water in northern China using a modelling approach: I. Field experiments and model evaluation," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:4:p:367-:d:538646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.