Power Quality Disturbance Classification Using the S-Transform and Probabilistic Neural Network
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Nantian Huang & Shuxin Zhang & Guowei Cai & Dianguo Xu, 2015. "Power Quality Disturbances Recognition Based on a Multiresolution Generalized S-Transform and a PSO-Improved Decision Tree," Energies, MDPI, vol. 8(1), pages 1-24, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Kewei Cai & Belema Prince Alalibo & Wenping Cao & Zheng Liu & Zhiqiang Wang & Guofeng Li, 2018. "Hybrid Approach for Detecting and Classifying Power Quality Disturbances Based on the Variational Mode Decomposition and Deep Stochastic Configuration Network," Energies, MDPI, vol. 11(11), pages 1-18, November.
- Delong Cai & Kaicheng Li & Shunfan He & Yuanzheng Li & Yi Luo, 2018. "On the Application of Joint-Domain Dictionary Mapping for Multiple Power Disturbance Assessment," Energies, MDPI, vol. 11(2), pages 1-17, February.
- Zhang, Liangheng & Jiang, Congmei & Pang, Aiping & He, Yu, 2024. "Super-efficient detector and defense method for adversarial attacks in power quality classification," Applied Energy, Elsevier, vol. 361(C).
- Yue Shen & Muhammad Abubakar & Hui Liu & Fida Hussain, 2019. "Power Quality Disturbance Monitoring and Classification Based on Improved PCA and Convolution Neural Network for Wind-Grid Distribution Systems," Energies, MDPI, vol. 12(7), pages 1-26, April.
- Juan Carlos Bravo-Rodríguez & Francisco J. Torres & María D. Borrás, 2020. "Hybrid Machine Learning Models for Classifying Power Quality Disturbances: A Comparative Study," Energies, MDPI, vol. 13(11), pages 1-20, June.
- Pu Zhao & Qing Chen & Kongming Sun & Chuanxin Xi, 2017. "A Current Frequency Component-Based Fault-Location Method for Voltage-Source Converter-Based High-Voltage Direct Current (VSC-HVDC) Cables Using the S Transform," Energies, MDPI, vol. 10(8), pages 1-15, July.
- Wang, Shouxiang & Chen, Haiwen, 2019. "A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network," Applied Energy, Elsevier, vol. 235(C), pages 1126-1140.
- Ruijin Zhu & Xuejiao Gong & Shifeng Hu & Yusen Wang, 2019. "Power Quality Disturbances Classification via Fully-Convolutional Siamese Network and k-Nearest Neighbor," Energies, MDPI, vol. 12(24), pages 1-12, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nantian Huang & Hua Peng & Guowei Cai & Jikai Chen, 2016. "Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm," Energies, MDPI, vol. 9(11), pages 1-21, November.
- Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Lintao Yang & Honggeng Yang & Haitao Liu, 2018. "GMDH-Based Semi-Supervised Feature Selection for Electricity Load Classification Forecasting," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
- Juan Carlos Bravo-Rodríguez & Francisco J. Torres & María D. Borrás, 2020. "Hybrid Machine Learning Models for Classifying Power Quality Disturbances: A Comparative Study," Energies, MDPI, vol. 13(11), pages 1-20, June.
- Jingjing Bai & Wei Gu & Xiaodong Yuan & Qun Li & Feng Xue & Xuchong Wang, 2015. "Power Quality Prediction, Early Warning, and Control for Points of Common Coupling with Wind Farms," Energies, MDPI, vol. 8(9), pages 1-18, August.
- Misael Lopez-Ramirez & Luis Ledesma-Carrillo & Eduardo Cabal-Yepez & Carlos Rodriguez-Donate & Homero Miranda-Vidales & Arturo Garcia-Perez, 2016. "EMD-Based Feature Extraction for Power Quality Disturbance Classification Using Moments," Energies, MDPI, vol. 9(7), pages 1-15, July.
- Supanat Chamchuen & Apirat Siritaratiwat & Pradit Fuangfoo & Puripong Suthisopapan & Pirat Khunkitti, 2021. "High-Accuracy Power Quality Disturbance Classification Using the Adaptive ABC-PSO as Optimal Feature Selection Algorithm," Energies, MDPI, vol. 14(5), pages 1-18, February.
- Raquel Martinez & Pablo Castro & Alberto Arroyo & Mario Manana & Noemi Galan & Fidel Simon Moreno & Sergio Bustamante & Alberto Laso, 2022. "Techniques to Locate the Origin of Power Quality Disturbances in a Power System: A Review," Sustainability, MDPI, vol. 14(12), pages 1-27, June.
- Isabel M. Moreno-Garcia & Antonio Moreno-Munoz & Aurora Gil-de-Castro & Math Bollen & Irene Y. H. Gu, 2015. "Novel Segmentation Technique for Measured Three-Phase Voltage Dips," Energies, MDPI, vol. 8(8), pages 1-20, August.
- Guoqing Weng & Feiteng Huang & Jun Yan & Xiaodong Yang & Youbing Zhang & Haibo He, 2016. "A Fault-Tolerant Location Approach for Transient Voltage Disturbance Source Based on Information Fusion," Energies, MDPI, vol. 9(12), pages 1-23, December.
More about this item
Keywords
transient power quality; S-transform; width factor; feature extraction; probabilistic neural network (PNN);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:107-:d:88011. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.