IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1284-d110163.html
   My bibliography  Save this article

Online Lithium-Ion Battery Internal Resistance Measurement Application in State-of-Charge Estimation Using the Extended Kalman Filter

Author

Listed:
  • Dian Wang

    (Department of Physics, Donghua University, Shanghai 201620, China)

  • Yun Bao

    (Department of Physics, Donghua University, Shanghai 201620, China)

  • Jianjun Shi

    (Department of Physics, Donghua University, Shanghai 201620, China)

Abstract

The lithium-ion battery is a viable power source for hybrid electric vehicles (HEVs) and, more recently, electric vehicles (EVs). Its performance, especially in terms of state of charge (SOC), plays a significant role in the energy management of these vehicles. The extended Kalman filter (EKF) is widely used to estimate online SOC as an efficient estimation algorithm. However, conventional EKF algorithms cannot accurately estimate the difference between individual batteries, which should not be ignored. However, the internal resistance of a battery can represent this difference. Therefore, this work proposes using an EKF with internal resistance measurement based on the conventional algorithm. Lithium-ion battery real-time resistances can help the Kalman filter overcome defects from simplistic battery models. In addition, experimental results show that it is useful to introduce online internal resistance to the estimation of SOC.

Suggested Citation

  • Dian Wang & Yun Bao & Jianjun Shi, 2017. "Online Lithium-Ion Battery Internal Resistance Measurement Application in State-of-Charge Estimation Using the Extended Kalman Filter," Energies, MDPI, vol. 10(9), pages 1-11, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1284-:d:110163
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1284/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1284/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saeed Sepasi & Leon R. Roose & Marc M. Matsuura, 2015. "Extended Kalman Filter with a Fuzzy Method for Accurate Battery Pack State of Charge Estimation," Energies, MDPI, vol. 8(6), pages 1-17, June.
    2. M. Armand & J.-M. Tarascon, 2008. "Building better batteries," Nature, Nature, vol. 451(7179), pages 652-657, February.
    3. Hongwen He & Rui Xiong & Jinxin Fan, 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach," Energies, MDPI, vol. 4(4), pages 1-17, March.
    4. Waag, Wladislaw & Käbitz, Stefan & Sauer, Dirk Uwe, 2013. "Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application," Applied Energy, Elsevier, vol. 102(C), pages 885-897.
    5. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Chun-Pang & Cabrera, Javier & Yang, Fangfang & Ling, Man-Ho & Tsui, Kwok-Leung & Bae, Suk-Joo, 2020. "Battery state of health modeling and remaining useful life prediction through time series model," Applied Energy, Elsevier, vol. 275(C).
    2. Minhwan Seo & Taedong Goh & Minjun Park & Sang Woo Kim, 2018. "Detection Method for Soft Internal Short Circuit in Lithium-Ion Battery Pack by Extracting Open Circuit Voltage of Faulted Cell," Energies, MDPI, vol. 11(7), pages 1-18, June.
    3. In-Ho Cho & Pyeong-Yeon Lee & Jong-Hoon Kim, 2019. "Analysis of the Effect of the Variable Charging Current Control Method on Cycle Life of Li-ion Batteries," Energies, MDPI, vol. 12(15), pages 1-11, August.
    4. Taysa Millena Banik Marques & João Lucas Ferreira dos Santos & Diego Solak Castanho & Mariane Bigarelli Ferreira & Sergio L. Stevan & Carlos Henrique Illa Font & Thiago Antonini Alves & Cassiano Moro , 2023. "An Overview of Methods and Technologies for Estimating Battery State of Charge in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-18, June.
    5. Sayfutdinov, Timur & Vorobev, Petr, 2022. "Optimal utilization strategy of the LiFePO4 battery storage," Applied Energy, Elsevier, vol. 316(C).
    6. Yun Bao & Yuansheng Chen, 2021. "Lithium-Ion Battery Real-Time Diagnosis with Direct Current Impedance Spectroscopy," Energies, MDPI, vol. 14(15), pages 1-16, July.
    7. Xu, Nan & Kong, Yan & Zhang, Yuanjian & Yue, Fenglai & Sui, Yan & Li, Xiaohan & Liu, Heng & Xu, Zhe, 2022. "Determination of vehicle working modes for global optimization energy management and evaluation of the economic performance for a certain control strategy," Energy, Elsevier, vol. 251(C).
    8. Youssef NaitMalek & Mehdi Najib & Anas Lahlou & Mohamed Bakhouya & Jaafar Gaber & Mohamed Essaaidi, 2022. "A Hybrid Approach for State-of-Charge Forecasting in Battery-Powered Electric Vehicles," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    9. Zhu, Tao & Lot, Roberto & Wills, Richard G.A. & Yan, Xingda, 2020. "Sizing a battery-supercapacitor energy storage system with battery degradation consideration for high-performance electric vehicles," Energy, Elsevier, vol. 208(C).
    10. Nicola Campagna & Vincenzo Castiglia & Rosario Miceli & Rosa Anna Mastromauro & Ciro Spataro & Marco Trapanese & Fabio Viola, 2020. "Battery Models for Battery Powered Applications: A Comparative Study," Energies, MDPI, vol. 13(16), pages 1-26, August.
    11. Jong-Hyun Lee & In-Soo Lee, 2021. "Lithium Battery SOH Monitoring and an SOC Estimation Algorithm Based on the SOH Result," Energies, MDPI, vol. 14(15), pages 1-16, July.
    12. Foad H. Gandoman & Emad M. Ahmed & Ziad M. Ali & Maitane Berecibar & Ahmed F. Zobaa & Shady H. E. Abdel Aleem, 2021. "Reliability Evaluation of Lithium-Ion Batteries for E-Mobility Applications from Practical and Technical Perspectives: A Case Study," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    13. Yonghui Sun & Yi Wang & Linquan Bai & Yinlong Hu & Denis Sidorov & Daniil Panasetsky, 2018. "Parameter Estimation of Electromechanical Oscillation Based on a Constrained EKF with C&I-PSO," Energies, MDPI, vol. 11(8), pages 1-15, August.
    14. Nicolae Tudoroiu & Mohammed Zaheeruddin & Roxana-Elena Tudoroiu, 2020. "Real Time Design and Implementation of State of Charge Estimators for a Rechargeable Lithium-Ion Cobalt Battery with Applicability in HEVs/EVs—A Comparative Study," Energies, MDPI, vol. 13(11), pages 1-45, May.
    15. Wiesław Madej & Andrzej Wojciechowski, 2021. "Analysis of the Charging and Discharging Process of LiFePO 4 Battery Pack," Energies, MDPI, vol. 14(13), pages 1-12, July.
    16. Yun Bao & Wenbin Dong & Dian Wang, 2018. "Online Internal Resistance Measurement Application in Lithium Ion Battery Capacity and State of Charge Estimation," Energies, MDPI, vol. 11(5), pages 1-11, April.
    17. Naga Kavitha Kommuri & Andrew McGordon & Antony Allen & Dinh Quang Truong, 2020. "Evaluation of a Modified Equivalent Fuel-Consumption Minimization Strategy Considering Engine Start Frequency and Battery Parameters for a Plugin Hybrid Two-Wheeler," Energies, MDPI, vol. 13(12), pages 1-26, June.
    18. Seo, Minhwan & Song, Youngbin & Kim, Jake & Paek, Sung Wook & Kim, Gi-Heon & Kim, Sang Woo, 2021. "Innovative lumped-battery model for state of charge estimation of lithium-ion batteries under various ambient temperatures," Energy, Elsevier, vol. 226(C).
    19. Zhang, Jie & Xiao, Bo & Niu, Geng & Xie, Xuanzhi & Wu, Saixiang, 2024. "Joint estimation of state-of-charge and state-of-power for hybrid supercapacitors using fractional-order adaptive unscented Kalman filter," Energy, Elsevier, vol. 294(C).
    20. Choi, Mingi & Cha, Junepyo & Song, Jingeun, 2024. "Analysis of fuel economy reduction factors of hybrid electric vehicles in winter using on-road driving data," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    2. Sina Shojaei & Andrew McGordon & Simon Robinson & James Marco, 2017. "Improving the Performance Attributes of Plug-in Hybrid Electric Vehicles in Hot Climates through Key-Off Battery Cooling," Energies, MDPI, vol. 10(12), pages 1-28, December.
    3. Xiong, Rui & Tian, Jinpeng & Mu, Hao & Wang, Chun, 2017. "A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 372-383.
    4. Yun Bao & Wenbin Dong & Dian Wang, 2018. "Online Internal Resistance Measurement Application in Lithium Ion Battery Capacity and State of Charge Estimation," Energies, MDPI, vol. 11(5), pages 1-11, April.
    5. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    6. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    7. Thanh-Tung Nguyen & Abdul Basit Khan & Younghwi Ko & Woojin Choi, 2020. "An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter," Energies, MDPI, vol. 13(17), pages 1-15, September.
    8. Qiaohua Fang & Xuezhe Wei & Haifeng Dai, 2019. "A Remaining Discharge Energy Prediction Method for Lithium-Ion Battery Pack Considering SOC and Parameter Inconsistency," Energies, MDPI, vol. 12(6), pages 1-24, March.
    9. Jiang, Yunfeng & Xia, Bing & Zhao, Xin & Nguyen, Truong & Mi, Chris & de Callafon, Raymond A., 2017. "Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery," Energy, Elsevier, vol. 135(C), pages 171-181.
    10. Ashikur Rahman & Xianke Lin & Chongming Wang, 2022. "Li-Ion Battery Anode State of Charge Estimation and Degradation Monitoring Using Battery Casing via Unknown Input Observer," Energies, MDPI, vol. 15(15), pages 1-19, August.
    11. Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.
    12. Ding, Xiaofeng & Zhang, Donghuai & Cheng, Jiawei & Wang, Binbin & Luk, Patrick Chi Kwong, 2019. "An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles," Applied Energy, Elsevier, vol. 254(C).
    13. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    14. Tang, Xiaopeng & Liu, Boyang & Lv, Zhou & Gao, Furong, 2017. "Observer based battery SOC estimation: Using multi-gain-switching approach," Applied Energy, Elsevier, vol. 204(C), pages 1275-1283.
    15. Bizhong Xia & Zizhou Lao & Ruifeng Zhang & Yong Tian & Guanghao Chen & Zhen Sun & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2017. "Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-23, December.
    16. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    17. Woo-Yong Kim & Pyeong-Yeon Lee & Jonghoon Kim & Kyung-Soo Kim, 2019. "A Nonlinear-Model-Based Observer for a State-of-Charge Estimation of a Lithium-Ion Battery in Electric Vehicles," Energies, MDPI, vol. 12(17), pages 1-20, September.
    18. Ganna Kostenko & Artur Zaporozhets, 2024. "Transition from Electric Vehicles to Energy Storage: Review on Targeted Lithium-Ion Battery Diagnostics," Energies, MDPI, vol. 17(20), pages 1-17, October.
    19. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Zizhou Lao, 2017. "A Cubature Particle Filter Algorithm to Estimate the State of the Charge of Lithium-Ion Batteries Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(4), pages 1-15, April.
    20. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1284-:d:110163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.