IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p9993-d886713.html
   My bibliography  Save this article

A Hybrid Approach for State-of-Charge Forecasting in Battery-Powered Electric Vehicles

Author

Listed:
  • Youssef NaitMalek

    (College of Engineering and Architecture, LERMA-Lab, TIC-Lab, International University of Rabat, Sala El Jadida 11103, Morocco
    École Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Mohamed V University, Rabat 10130, Morocco)

  • Mehdi Najib

    (College of Engineering and Architecture, LERMA-Lab, TIC-Lab, International University of Rabat, Sala El Jadida 11103, Morocco)

  • Anas Lahlou

    (Centralesupelec, Paris-Saclay University, 92150 Paris, France)

  • Mohamed Bakhouya

    (College of Engineering and Architecture, LERMA-Lab, TIC-Lab, International University of Rabat, Sala El Jadida 11103, Morocco)

  • Jaafar Gaber

    (Université de Technologie de Belfort Montbéliard (UTBM), FEMTO-ST UMR CNRS 6174, Bourgogne Franche-Comté, 25000 Belfort, France)

  • Mohamed Essaaidi

    (École Nationale Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Mohamed V University, Rabat 10130, Morocco)

Abstract

Nowadays, electric vehicles (EV) are increasingly penetrating the transportation roads in most countries worldwide. Many efforts are oriented toward the deployment of the EVs infrastructures, including those dedicated to intelligent transportation and electro-mobility as well. For instance, many Moroccan organizations are collaborating to deploy charging stations in mostly all Moroccan cities. Furthermore, in Morocco, EVs are tax-free, and their users can charge for free their vehicles in any station. However, customers are still worried by the driving range of EVs. For instance, a new driving style is needed to increase the driving range of their EV, which is not easy in most cases. Therefore, the need for a companion system that helps in adopting a suitable driving style arise. The driving range depends mainly on the battery’s capacity. Hence, knowing in advance the battery’s state-of-charge (SoC) could help in computing the remaining driving range. In this paper, a battery SoC forecasting method is introduced and tested in a real case scenario on Rabat-Salé-Kénitra urban roads using a Twizy EV. Results show that this method is able to forecast the SoC up to 180 s ahead with minimal errors and low computational overhead, making it more suitable for deployment in in-vehicle embedded systems.

Suggested Citation

  • Youssef NaitMalek & Mehdi Najib & Anas Lahlou & Mohamed Bakhouya & Jaafar Gaber & Mohamed Essaaidi, 2022. "A Hybrid Approach for State-of-Charge Forecasting in Battery-Powered Electric Vehicles," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:9993-:d:886713
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/9993/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/9993/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dian Wang & Yun Bao & Jianjun Shi, 2017. "Online Lithium-Ion Battery Internal Resistance Measurement Application in State-of-Charge Estimation Using the Extended Kalman Filter," Energies, MDPI, vol. 10(9), pages 1-11, August.
    2. Chen, G.Q. & Wu, X.D. & Guo, Jinlan & Meng, Jing & Li, Chaohui, 2019. "Global overview for energy use of the world economy: Household-consumption-based accounting based on the world input-output database (WIOD)," Energy Economics, Elsevier, vol. 81(C), pages 835-847.
    3. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert & Veneroni, Marco, 2017. "Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 158-187.
    4. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    5. Christopher W. H. Davis & Antonie J. Jetter & Philippe J. Giabbanelli, 2022. "Automatically Generating Scenarios from a Text Corpus: A Case Study on Electric Vehicles," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    6. Anas Lahlou & Florence Ossart & Emmanuel Boudard & Francis Roy & Mohamed Bakhouya, 2020. "Optimal Management of Thermal Comfort and Driving Range in Electric Vehicles," Energies, MDPI, vol. 13(17), pages 1-31, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolae Tudoroiu & Mohammed Zaheeruddin & Roxana-Elena Tudoroiu, 2020. "Real Time Design and Implementation of State of Charge Estimators for a Rechargeable Lithium-Ion Cobalt Battery with Applicability in HEVs/EVs—A Comparative Study," Energies, MDPI, vol. 13(11), pages 1-45, May.
    2. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    3. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    4. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    5. Yun Bao & Yuansheng Chen, 2021. "Lithium-Ion Battery Real-Time Diagnosis with Direct Current Impedance Spectroscopy," Energies, MDPI, vol. 14(15), pages 1-16, July.
    6. Liang, Longwu & Chen, Mingxing & Zhang, Xiaoping & Sun, Mingxing, 2024. "Understanding changes in household carbon footprint during rapid urbanization in China," Energy Policy, Elsevier, vol. 185(C).
    7. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    8. Yang Xia & Wenjia Zeng & Xinjie Xing & Yuanzhu Zhan & Kim Hua Tan & Ajay Kumar, 2023. "Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing," Annals of Operations Research, Springer, vol. 327(1), pages 89-127, August.
    9. Lennart Petersen & Florin Iov & German Claudio Tarnowski & Vahan Gevorgian & Przemyslaw Koralewicz & Daniel-Ioan Stroe, 2019. "Validating Performance Models for Hybrid Power Plant Control Assessment," Energies, MDPI, vol. 12(22), pages 1-26, November.
    10. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    11. Ji, Xi & Liu, Yifang & Wu, Guowei & Su, Pinyi & Ye, Zhen & Feng, Kuishuang, 2022. "Global value chain participation and trade-induced energy inequality," Energy Economics, Elsevier, vol. 112(C).
    12. Cahen-Fourot, Louison & Campiglio, Emanuele & Godin, Antoine & Kemp-Benedict, Eric & Trsek, Stefan, 2021. "Capital stranding cascades: The impact of decarbonisation on productive asset utilisation," Energy Economics, Elsevier, vol. 103(C).
    13. Jorge Varela Barreras & Ricardo de Castro & Yihao Wan & Tomislav Dragicevic, 2021. "A Consensus Algorithm for Multi-Objective Battery Balancing," Energies, MDPI, vol. 14(14), pages 1-25, July.
    14. Wang, Chengwei & Miao, Wang & Lu, Miaomiao, 2022. "Evolution of the Chinese industrial structure: A social network perspective," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    15. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    16. Donghun Wang & Jihwan Hwang & Jonghyun Lee & Minchan Kim & Insoo Lee, 2023. "Temperature-Based State-of-Charge Estimation Using Neural Networks, Gradient Boosting Machine and a Jetson Nano Device for Batteries," Energies, MDPI, vol. 16(6), pages 1-17, March.
    17. Park, Sung-Won & Son, Sung-Yong, 2023. "Techno-economic analysis for the electric vehicle battery aging management of charge point operator," Energy, Elsevier, vol. 280(C).
    18. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    20. Ramesh Kumar Chidambaram & Dipankar Chatterjee & Barnali Barman & Partha Pratim Das & Dawid Taler & Jan Taler & Tomasz Sobota, 2023. "Effect of Regenerative Braking on Battery Life," Energies, MDPI, vol. 16(14), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:9993-:d:886713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.