IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1268-d109857.html
   My bibliography  Save this article

Modelling and Simulation of Electric Vehicle Fast Charging Stations Driven by High Speed Railway Systems

Author

Listed:
  • Morris Brenna

    (Department of Energy, Politecnico di Milano, via La Masa, 34-20156 Milano, Italy)

  • Michela Longo

    (Department of Energy, Politecnico di Milano, via La Masa, 34-20156 Milano, Italy)

  • Wahiba Yaïci

    (CanmetENERGY Research Centre, Natural Resources Canada, 1 Haanel Drive, Ottawa, ON K1A 1M1, Canada)

Abstract

The aim of this investigation is the analysis of the opportunity introduced by the use of railway infrastructures for the power supply of fast charging stations located in highways. Actually, long highways are often located far from urban areas and electrical infrastructure, therefore the installations of high power charging areas can be difficult. Specifically, the aim of this investigation is the analysis of the opportunity introduced by the use of railway infrastructures for the power supply of fast charging stations located in highways. Specifically, this work concentrates on fast-charging electric cars in motorway service areas by using high-speed lines for supplying the required power. Economic, security, safety and environmental pressures are motivating and pushing countries around the globe to electrify transportation, which currently accounts for a significant amount, above 70 percent of total oil demand. Electric cars require fast-charging station networks to allowing owners to rapidly charge their batteries when they drive relatively long routes. In other words, this means about the infrastructure towards building charging stations in motorway service areas and addressing the problem of finding solutions for suitable electric power sources. A possible and promising solution is proposed in the study that involves using the high-speed railway line, because it allows not only powering a high load but also it can be located relatively near the motorway itself. This paper presents a detailed investigation on the modelling and simulation of a 2 × 25 kV system to feed the railway. A model has been developed and implemented using the SimPower systems tool in MATLAB/Simulink to simulate the railway itself. Then, the model has been applied to simulate the battery charger and the system as a whole in two successive steps. The results showed that the concept could work in a real situation. Nonetheless if more than twenty 100 kW charging bays are required in each direction or if the line topology is changed for whatever reason, it cannot be guaranteed that the railway system will be able to deliver the additional power that is necessary.

Suggested Citation

  • Morris Brenna & Michela Longo & Wahiba Yaïci, 2017. "Modelling and Simulation of Electric Vehicle Fast Charging Stations Driven by High Speed Railway Systems," Energies, MDPI, vol. 10(9), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1268-:d:109857
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergio Saponara, 2016. "Distributed Measuring System for Predictive Diagnosis of Uninterruptible Power Supplies in Safety-Critical Applications," Energies, MDPI, vol. 9(5), pages 1-18, April.
    2. Yagcitekin, Bunyamin & Uzunoglu, Mehmet, 2016. "A double-layer smart charging strategy of electric vehicles taking routing and charge scheduling into account," Applied Energy, Elsevier, vol. 167(C), pages 407-419.
    3. Vincenzo Franzitta & Domenico Curto & Daniele Milone & Marco Trapanese, 2017. "Energy Saving in Public Transport Using Renewable Energy," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    4. Wang, Yubo & Shi, Wenbo & Wang, Bin & Chu, Chi-Cheng & Gadh, Rajit, 2017. "Optimal operation of stationary and mobile batteries in distribution grids," Applied Energy, Elsevier, vol. 190(C), pages 1289-1301.
    5. Chandra Mouli, G.R. & Bauer, P. & Zeman, M., 2016. "System design for a solar powered electric vehicle charging station for workplaces," Applied Energy, Elsevier, vol. 168(C), pages 434-443.
    6. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.
    7. Morrissey, Patrick & Weldon, Peter & O’Mahony, Margaret, 2016. "Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour," Energy Policy, Elsevier, vol. 89(C), pages 257-270.
    8. Tulpule, Pinak J. & Marano, Vincenzo & Yurkovich, Stephen & Rizzoni, Giorgio, 2013. "Economic and environmental impacts of a PV powered workplace parking garage charging station," Applied Energy, Elsevier, vol. 108(C), pages 323-332.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergio Saponara & Lucian Mihet-Popa, 2019. "Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid," Energies, MDPI, vol. 12(4), pages 1-9, February.
    2. Andrea Stabile & Michela Longo & Wahiba Yaïci & Federica Foiadelli, 2020. "An Algorithm for Optimization of Recharging Stops: A Case Study of Electric Vehicle Charging Stations on Canadian’s Ontario Highway 401," Energies, MDPI, vol. 13(8), pages 1-19, April.
    3. Rui Ye & Xueliang Huang & Ziqi Zhang & Zhong Chen & Ran Duan, 2018. "A High-Efficiency Charging Service System for Plug-in Electric Vehicles Considering the Capacity Constraint of the Distribution Network," Energies, MDPI, vol. 11(4), pages 1-20, April.
    4. Adrián Fernández-Rodríguez & Antonio Fernández-Cardador & Asunción P. Cucala & Maria Carmen Falvo, 2019. "Energy Efficiency and Integration of Urban Electrical Transport Systems: EVs and Metro-Trains of Two Real European Lines," Energies, MDPI, vol. 12(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eltoumi, Fouad M. & Becherif, Mohamed & Djerdir, Abdesslem & Ramadan, Haitham.S., 2021. "The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Benedetto Aluisio & Maria Dicorato & Imma Ferrini & Giuseppe Forte & Roberto Sbrizzai & Michele Trovato, 2019. "Optimal Sizing Procedure for Electric Vehicle Supply Infrastructure Based on DC Microgrid with Station Commitment," Energies, MDPI, vol. 12(10), pages 1-19, May.
    3. Paterakis, Nikolaos G. & Gibescu, Madeleine, 2016. "A methodology to generate power profiles of electric vehicle parking lots under different operational strategies," Applied Energy, Elsevier, vol. 173(C), pages 111-123.
    4. Nick Rigogiannis & Ioannis Bogatsis & Christos Pechlivanis & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Moving towards Greener Road Transportation: A Review," Clean Technol., MDPI, vol. 5(2), pages 1-25, June.
    5. Figueiredo, Raquel & Nunes, Pedro & Brito, Miguel C., 2017. "The feasibility of solar parking lots for electric vehicles," Energy, Elsevier, vol. 140(P1), pages 1182-1197.
    6. Simon Steinschaden & José Baptista, 2020. "Development of an Efficient Tool for Solar Charging Station Management for Electric Vehicles," Energies, MDPI, vol. 13(11), pages 1-21, June.
    7. Deshmukh, Swaraj Sanjay & Pearce, Joshua M., 2021. "Electric vehicle charging potential from retail parking lot solar photovoltaic awnings," Renewable Energy, Elsevier, vol. 169(C), pages 608-617.
    8. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Anamarija Falkoni & Antun Pfeifer & Goran Krajačić, 2020. "Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs," Energies, MDPI, vol. 13(6), pages 1-22, March.
    10. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    11. Muratori, Matteo & Elgqvist, Emma & Cutler, Dylan & Eichman, Joshua & Salisbury, Shawn & Fuller, Zachary & Smart, John, 2019. "Technology solutions to mitigate electricity cost for electric vehicle DC fast charging," Applied Energy, Elsevier, vol. 242(C), pages 415-423.
    12. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    13. Bhatti, Abdul Rauf & Salam, Zainal, 2018. "A rule-based energy management scheme for uninterrupted electric vehicles charging at constant price using photovoltaic-grid system," Renewable Energy, Elsevier, vol. 125(C), pages 384-400.
    14. Shubham Mishra & Shrey Verma & Subhankar Chowdhury & Ambar Gaur & Subhashree Mohapatra & Gaurav Dwivedi & Puneet Verma, 2021. "A Comprehensive Review on Developments in Electric Vehicle Charging Station Infrastructure and Present Scenario of India," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    15. Gheorghe Badea & Raluca-Andreea Felseghi & Mihai Varlam & Constantin Filote & Mihai Culcer & Mariana Iliescu & Maria Simona Răboacă, 2018. "Design and Simulation of Romanian Solar Energy Charging Station for Electric Vehicles," Energies, MDPI, vol. 12(1), pages 1-16, December.
    16. Naireeta Deb & Rajendra Singh & Richard R. Brooks & Kevin Bai, 2021. "A Review of Extremely Fast Charging Stations for Electric Vehicles," Energies, MDPI, vol. 14(22), pages 1-27, November.
    17. Azhar Ul-Haq & Carlo Cecati & Essam A. Al-Ammar, 2016. "Modeling of a Photovoltaic-Powered Electric Vehicle Charging Station with Vehicle-to-Grid Implementation," Energies, MDPI, vol. 10(1), pages 1-20, December.
    18. Hanadi Al-Thani & Muammer Koç & Rima J. Isaifan & Yusuf Bicer, 2022. "A Review of the Integrated Renewable Energy Systems for Sustainable Urban Mobility," Sustainability, MDPI, vol. 14(17), pages 1-27, August.
    19. Yang, Libing & Ribberink, Hajo, 2019. "Investigation of the potential to improve DC fast charging station economics by integrating photovoltaic power generation and/or local battery energy storage system," Energy, Elsevier, vol. 167(C), pages 246-259.
    20. Hung, Duong Quoc & Dong, Zhao Yang & Trinh, Hieu, 2016. "Determining the size of PHEV charging stations powered by commercial grid-integrated PV systems considering reactive power support," Applied Energy, Elsevier, vol. 183(C), pages 160-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1268-:d:109857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.