IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1224-d108672.html
   My bibliography  Save this article

Best Practices for Recovering Rural Abandoned Towers through the Installation of Small-Scale Biogas Plants

Author

Listed:
  • Mattia Manni

    (Department of Engineering, CIRIAF—Interuniversity Research Center on Pollution and Environment “Mauro Felli”, Via G. Duranti 67, 06125 Perugia, Italy)

  • Valentina Coccia

    (Department of Engineering, CIRIAF—Interuniversity Research Center on Pollution and Environment “Mauro Felli”, Via G. Duranti 67, 06125 Perugia, Italy)

  • Gianluca Cavalaglio

    (Department of Engineering, CIRIAF—Interuniversity Research Center on Pollution and Environment “Mauro Felli”, Via G. Duranti 67, 06125 Perugia, Italy)

  • Andrea Nicolini

    (Department of Engineering, CIRIAF—Interuniversity Research Center on Pollution and Environment “Mauro Felli”, Via G. Duranti 67, 06125 Perugia, Italy)

  • Alessandro Petrozzi

    (Department of Engineering, CIRIAF—Interuniversity Research Center on Pollution and Environment “Mauro Felli”, Via G. Duranti 67, 06125 Perugia, Italy)

Abstract

The massive and continuous development of renewable energy systems is making it possible to achieve the European goals regarding environment and sustainability. On the other hand, it leads to the progression of significant problems such as low renewable energy density (i), social acceptability (ii), and non-programmability of renewable energy sources (iii). The rural architecture, which is largely present in the countryside of central Italy, is generally equipped with several annexes such as dovecotes (i), grain stores (ii), and tobacco drying kilns (iii). Nowadays, those towers appear in decay because of the decline of agricultural activities, although they are classed as Environmental and Historical Heritage sites. The present work aims to propose a methodology for improving the energy grid in the countryside, while reusing abandoned buildings by modifying their function and maintaining their aspect as much as possible. The proposed workflow was applied to a rural silo, which has fallen into disuse, in Sant’Apollinare (Marsciano, Perugia) by converting it into a mini-biogas plant. The function of the annex which was chosen as the case study changes from agricultural use to energy production: it becomes an on-site renewable energy-based electric grid that can produce clean energy from agricultural and forestry residues. The project turns out to be sustainable not only in terms of energy and the environment, but also from an economic point of view as a result of the recent regulations and incentives for renewable energy production.

Suggested Citation

  • Mattia Manni & Valentina Coccia & Gianluca Cavalaglio & Andrea Nicolini & Alessandro Petrozzi, 2017. "Best Practices for Recovering Rural Abandoned Towers through the Installation of Small-Scale Biogas Plants," Energies, MDPI, vol. 10(8), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1224-:d:108672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Papurello, Davide & Lanzini, Andrea & Tognana, Lorenzo & Silvestri, Silvia & Santarelli, Massimo, 2015. "Waste to energy: Exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack," Energy, Elsevier, vol. 85(C), pages 145-158.
    2. Emanuele Bonamente & Lara Pelliccia & Maria Cleofe Merico & Sara Rinaldi & Alessandro Petrozzi, 2015. "The Multifunctional Environmental Energy Tower: Carbon Footprint and Land Use Analysis of an Integrated Renewable Energy Plant," Sustainability, MDPI, vol. 7(10), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr F. Borowski & Jan Barwicki, 2022. "Efficiency of Utilization of Wastes for Green Energy Production and Reduction of Pollution in Rural Areas," Energies, MDPI, vol. 16(1), pages 1-12, December.
    2. Mattia Manni & Alessia Di Giuseppe & Andrea Nicolini & Fabio Sciurpi & Franco Cotana, 2021. "Influences of a Highly Reflective Mulching Membrane on Heat Propagation throughout the Soil," Sustainability, MDPI, vol. 13(17), pages 1-11, August.
    3. Spyridon Achinas & Johan Horjus & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "A PESTLE Analysis of Biofuels Energy Industry in Europe," Sustainability, MDPI, vol. 11(21), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silverman, Rochelle E. & Flores, Robert J. & Brouwer, Jack, 2020. "Energy and economic assessment of distributed renewable gas and electricity generation in a small disadvantaged urban community," Applied Energy, Elsevier, vol. 280(C).
    2. Tanveer, Waqas Hassan & Rezk, Hegazy & Nassef, Ahmed & Abdelkareem, Mohammad Ali & Kolosz, Ben & Karuppasamy, K. & Aslam, Jawad & Gilani, Syed Omer, 2020. "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, Elsevier, vol. 204(C).
    3. Papurello, Davide & Chiodo, Vitaliano & Maisano, Susanna & Lanzini, Andrea & Santarelli, Massimo, 2018. "Catalytic stability of a Ni-Catalyst towards biogas reforming in the presence of deactivating trace compounds," Renewable Energy, Elsevier, vol. 127(C), pages 481-494.
    4. Kupecki, Jakub & Papurello, Davide & Lanzini, Andrea & Naumovich, Yevgeniy & Motylinski, Konrad & Blesznowski, Marcin & Santarelli, Massimo, 2018. "Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operated in direct internal reforming mode (DIR-SOFC)," Applied Energy, Elsevier, vol. 230(C), pages 1573-1584.
    5. Ma, Chun & Yu, Hangyu & Monticone, Gianluca & Ma, Shuai & Van herle, Jan & Wang, Ligang, 2024. "Techno-economic evaluation of biogas-fed SOFC systems with novel biogas purification and carbon capture technologies," Renewable Energy, Elsevier, vol. 235(C).
    6. Emanuele Bonamente & Andrea Aquino, 2017. "Life-Cycle Assessment of an Innovative Ground-Source Heat Pump System with Upstream Thermal Storage," Energies, MDPI, vol. 10(11), pages 1-10, November.
    7. Jienkulsawad, Prathak & Arpornwichanop, Amornchai, 2016. "Investigating the performance of a solid oxide fuel cell and a molten carbonate fuel cell combined system," Energy, Elsevier, vol. 107(C), pages 843-853.
    8. Chang, Ikwhang & Bae, Jiwoong & Park, Joonho & Lee, Sunho & Ban, Myeongseok & Park, Taehyun & Lee, Yoon Ho & Song, Han Ho & Kim, Young-Beom & Cha, Suk Won, 2016. "A thermally self-sustaining solid oxide fuel cell system at ultra-low operating temperature (319 °C)," Energy, Elsevier, vol. 104(C), pages 107-113.
    9. Qiu, L. & Deng, Y.F. & Wang, F. & Davaritouchaee, M. & Yao, Y.Q., 2019. "A review on biochar-mediated anaerobic digestion with enhanced methane recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Lee, Sanghyeok & Park, Mansoo & Kim, Hyoungchul & Yoon, Kyung Joong & Son, Ji-Won & Lee, Jong-Ho & Kim, Byung-Kook & Choi, Wonjoon & Hong, Jongsup, 2017. "Thermal conditions and heat transfer characteristics of high-temperature solid oxide fuel cells investigated by three-dimensional numerical simulations," Energy, Elsevier, vol. 120(C), pages 293-305.
    11. Prodromidis, George N. & Coutelieris, Frank A., 2017. "Thermodynamic analysis of biogas fed solid oxide fuel cell power plants," Renewable Energy, Elsevier, vol. 108(C), pages 1-10.
    12. Rayner, Addison J. & Briggs, Johnathan & Tremback, Reed & Clemmer, Ryan M.C., 2017. "Design of an organic waste power plant coupling anaerobic digestion and solid oxide fuel cell technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 563-571.
    13. Prodromidis, George N. & Coutelieris, Frank A., 2020. "Solid Oxide Fuel Cell systems for electricity generation: An optimization prospect," Renewable Energy, Elsevier, vol. 146(C), pages 38-43.
    14. Wang, Yuqing & Wehrle, Lukas & Banerjee, Aayan & Shi, Yixiang & Deutschmann, Olaf, 2021. "Analysis of a biogas-fed SOFC CHP system based on multi-scale hierarchical modeling," Renewable Energy, Elsevier, vol. 163(C), pages 78-87.
    15. Yeh, Pulin & Chang, Chu Hsiang & Shih, Naichien & Yeh, Naichia, 2016. "Durability and efficiency tests for direct methanol fuel cell's long-term performance assessment," Energy, Elsevier, vol. 107(C), pages 716-724.
    16. Papurello, Davide & Iafrate, Chiara & Lanzini, Andrea & Santarelli, Massimo, 2017. "Trace compounds impact on SOFC performance: Experimental and modelling approach," Applied Energy, Elsevier, vol. 208(C), pages 637-654.
    17. Khani, Leyla & Mahmoudi, S. Mohammad S. & Chitsaz, Ata & Rosen, Marc A., 2016. "Energy and exergoeconomic evaluation of a new power/cooling cogeneration system based on a solid oxide fuel cell," Energy, Elsevier, vol. 94(C), pages 64-77.
    18. Papurello, Davide & Boschetti, Andrea & Silvestri, Silvia & Khomenko, Iuliia & Biasioli, Franco, 2018. "Real-time monitoring of removal of trace compounds with PTR-MS: Biochar experimental investigation," Renewable Energy, Elsevier, vol. 125(C), pages 344-355.
    19. Andrzej Kacprzak & Renata Włodarczyk, 2023. "Utilization of Organic Waste in a Direct Carbon Fuel Cell for Sustainable Electricity Generation," Energies, MDPI, vol. 16(21), pages 1-19, October.
    20. Sara Rinaldi & Emanuele Bonamente & Flavio Scrucca & Maria Cleofe Merico & Francesco Asdrubali & Franco Cotana, 2016. "Water and Carbon Footprint of Wine: Methodology Review and Application to a Case Study," Sustainability, MDPI, vol. 8(7), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1224-:d:108672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.