IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1147-d107017.html
   My bibliography  Save this article

Capacity Decay Mechanism of the LCO + NMC532/Graphite Cells Combined with Post-Mortem Technique

Author

Listed:
  • Linjing Zhang

    (National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing 100044, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Jiaotong University, Beijing 100044, China)

  • Jiuchun Jiang

    (National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing 100044, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Jiaotong University, Beijing 100044, China)

  • Weige Zhang

    (National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing 100044, China
    Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Jiaotong University, Beijing 100044, China)

Abstract

Lithium ion batteries are widely used in portable electronics and transportations due to their high energy and high power with low cost. However, they suffer from capacity degradation during long cycling, thus making it urgent to study their decay mechanisms. Commercial 18650-type LiCoO 2 + LiNi 0.5 Mn 0.3 Co 0.2 O 2 /graphite cells are cycled at 1 C rate for 700 cycles, and a continuous post-mortem analysis is performed. Based on these tests, the decay mechanism of the cells is finally proposed. The changes of differential capacity curves of the full cells show that the loss of active materials, loss of lithium ions and cell polarization are the main factors contributing to capacity loss. Non-fully charging of the electrodes is also one of the reasons, but only takes up a minor portion. Impedance results indicate that the charge transfer resistance becomes larger during cycling, especially at low state of charge. Morphology and surface chemistry analysis demonstrates that the electrode particles after cycling exhibit some minor cracks and some additional layers are formed on surfaces of both the cathode and anode electrodes. All of these effects may contribute to the impedance increase, and consequently lead to degradation of the full cells. Thus, a good protection of the surface of the cathode and anode shows great potential to improve the capacity maintenance and prolong the cycle life of the cells.

Suggested Citation

  • Linjing Zhang & Jiuchun Jiang & Weige Zhang, 2017. "Capacity Decay Mechanism of the LCO + NMC532/Graphite Cells Combined with Post-Mortem Technique," Energies, MDPI, vol. 10(8), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1147-:d:107017
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Armand & J.-M. Tarascon, 2008. "Building better batteries," Nature, Nature, vol. 451(7179), pages 652-657, February.
    2. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cornelius Satria Yudha & Soraya Ulfa Muzayanha & Hendri Widiyandari & Ferry Iskandar & Wahyudi Sutopo & Agus Purwanto, 2019. "Synthesis of LiNi 0.85 Co 0.14 Al 0.01 O 2 Cathode Material and its Performance in an NCA/Graphite Full-Battery," Energies, MDPI, vol. 12(10), pages 1-14, May.
    2. Kriegler, Johannes & Hille, Lucas & Stock, Sandro & Kraft, Ludwig & Hagemeister, Jan & Habedank, Jan Bernd & Jossen, Andreas & Zaeh, Michael F., 2021. "Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes," Applied Energy, Elsevier, vol. 303(C).
    3. Cornelius Satria Yudha & Soraya Ulfa Muzayanha & Mintarsih Rahmawati & Hendri Widiyandari & Wahyudi Sutopo & Muhammad Nizam & Sigit Puji Santosa & Agus Purwanto, 2020. "Fast Production of High Performance LiNi 0.815 Co 0.15 Al 0.035 O 2 Cathode Material via Urea-Assisted Flame Spray Pyrolysis," Energies, MDPI, vol. 13(11), pages 1-17, June.
    4. Francesca Pistorio & Davide Clerici & Francesco Mocera & Aurelio Somà, 2022. "Review on the Experimental Characterization of Fracture in Active Material for Lithium-Ion Batteries," Energies, MDPI, vol. 15(23), pages 1-47, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    2. Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Jack E. N. Swallow & Michael W. Fraser & Nis-Julian H. Kneusels & Jodie F. Charlton & Christopher G. Sole & Conor M. E. Phelan & Erik Björklund & Peter Bencok & Carlos Escudero & Virginia Pérez-Dieste, 2022. "Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Troy, Stefanie & Schreiber, Andrea & Reppert, Thorsten & Gehrke, Hans-Gregor & Finsterbusch, Martin & Uhlenbruck, Sven & Stenzel, Peter, 2016. "Life Cycle Assessment and resource analysis of all-solid-state batteries," Applied Energy, Elsevier, vol. 169(C), pages 757-767.
    7. Zhi Chang & Huijun Yang & Anqiang Pan & Ping He & Haoshen Zhou, 2022. "An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    9. Ruwani Kaushalya & Poobalasuntharam Iyngaran & Navaratnarajah Kuganathan & Alexander Chroneos, 2019. "Defect, Diffusion and Dopant Properties of NaNiO 2 : Atomistic Simulation Study," Energies, MDPI, vol. 12(16), pages 1-10, August.
    10. Li Sheng & Qianqian Wang & Xiang Liu & Hao Cui & Xiaolin Wang & Yulong Xu & Zonglong Li & Li Wang & Zonghai Chen & Gui-Liang Xu & Jianlong Wang & Yaping Tang & Khalil Amine & Hong Xu & Xiangming He, 2022. "Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. He, Lihua & Xu, Shengming & Zhao, Zhongwei, 2017. "Suppressing the formation of Fe2P: Thermodynamic study on the phase diagram and phase transformation for LiFePO4 synthesis," Energy, Elsevier, vol. 134(C), pages 962-967.
    12. Wenlin Zhang & Yongqi Zhao & Yu Huo, 2020. "Effect of FSI Based Ionic Liquid on High Voltage Li-Ion Batteries," Energies, MDPI, vol. 13(11), pages 1-13, June.
    13. Xiao Zhu & Tuan K. A. Hoang & Pu Chen, 2017. "Novel Carbon Materials in the Cathode Formulation for High Rate Rechargeable Hybrid Aqueous Batteries," Energies, MDPI, vol. 10(11), pages 1-17, November.
    14. Samson Yuxiu Lai & Carmen Cavallo & Muhammad E. Abdelhamid & Fengliu Lou & Alexey Y. Koposov, 2021. "Advanced and Emerging Negative Electrodes for Li-Ion Capacitors: Pragmatism vs. Performance," Energies, MDPI, vol. 14(11), pages 1-24, May.
    15. Xing Zhao & Peng Wang & Yan Wang & Peipei Chao & Honglei Dong, 2023. "Coprecipitation Synthesis and Impedance Studies on Electrode Interface Characteristics of 0.5Li 2 MnO 3 ·0.5Li(Ni 0.44 Mn 0.44 Co 0.12 )O 2 Cathode Material," Energies, MDPI, vol. 16(16), pages 1-16, August.
    16. Ying Liu & Xueying Li & Anupriya K. Haridas & Yuanzheng Sun & Jungwon Heo & Jou-Hyeon Ahn & Younki Lee, 2020. "Biomass-Derived Graphitic Carbon Encapsulated Fe/Fe 3 C Composite as an Anode Material for High-Performance Lithium Ion Batteries," Energies, MDPI, vol. 13(4), pages 1-10, February.
    17. Hammond, Geoffrey P. & Hazeldine, Tom, 2015. "Indicative energy technology assessment of advanced rechargeable batteries," Applied Energy, Elsevier, vol. 138(C), pages 559-571.
    18. Minsung Baek & Jinyoung Kim & Kwanghoon Jeong & Seonmo Yang & Heejin Kim & Jimin Lee & Minkwan Kim & Ki Jae Kim & Jang Wook Choi, 2023. "Naked metallic skin for homo-epitaxial deposition in lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Xiao, Feiyu & Xing, Bobin & Kong, Lingzhao & Xia, Yong, 2021. "Impedance-based diagnosis of internal mechanical damage for large-format lithium-ion batteries," Energy, Elsevier, vol. 230(C).
    20. Laura Albero Blanquer & Florencia Marchini & Jan Roman Seitz & Nour Daher & Fanny Bétermier & Jiaqiang Huang & Charlotte Gervillié & Jean-Marie Tarascon, 2022. "Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1147-:d:107017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.