IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p939-d103833.html
   My bibliography  Save this article

A Flexible Maximum Power Point Tracking Control Strategy Considering Both Conversion Efficiency and Power Fluctuation for Large-inertia Wind Turbines

Author

Listed:
  • Hongmin Meng

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

  • Tingting Yang

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

  • Ji-zhen Liu

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

  • Zhongwei Lin

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

Abstract

In wind turbine control, maximum power point tracking (MPPT) control is the main control mode for partial-load regimes. Efficiency potentiation of energy conversion and power smoothing are both two important control objectives in partial-load regime. However, on the one hand, low power fluctuation signifies inefficiency of energy conversion. On the other hand, enhancing efficiency may increase output power fluctuation as well. Thus the two objectives are contradictory and difficult to balance. This paper proposes a flexible MPPT control framework to improve the performance of both conversion efficiency and power smoothing, by adaptively compensating the torque reference value. The compensation was determined by a proposed model predictive control (MPC) method with dynamic weights in the cost function, which improved control performance. The computational burden of the MPC solver was reduced by transforming the cost function representation. Theoretical analysis proved the good stability and robustness. Simulation results showed that the proposed method not only kept efficiency at a high level, but also reduced power fluctuations as much as possible. Therefore, the proposed method could improve wind farm profits and power grid reliability.

Suggested Citation

  • Hongmin Meng & Tingting Yang & Ji-zhen Liu & Zhongwei Lin, 2017. "A Flexible Maximum Power Point Tracking Control Strategy Considering Both Conversion Efficiency and Power Fluctuation for Large-inertia Wind Turbines," Energies, MDPI, vol. 10(7), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:939-:d:103833
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/939/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/939/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kusiak, Andrew & Li, Wenyan & Song, Zhe, 2010. "Dynamic control of wind turbines," Renewable Energy, Elsevier, vol. 35(2), pages 456-463.
    2. Bououden, S. & Chadli, M. & Filali, S. & El Hajjaji, A., 2012. "Fuzzy model based multivariable predictive control of a variable speed wind turbine: LMI approach," Renewable Energy, Elsevier, vol. 37(1), pages 434-439.
    3. Silvio Simani, 2015. "Overview of Modelling and Advanced Control Strategies for Wind Turbine Systems," Energies, MDPI, vol. 8(12), pages 1-24, November.
    4. Jain, Achin & Schildbach, Georg & Fagiano, Lorenzo & Morari, Manfred, 2015. "On the design and tuning of linear model predictive control for wind turbines," Renewable Energy, Elsevier, vol. 80(C), pages 664-673.
    5. Dinh-Chung Phan & Shigeru Yamamoto, 2015. "Maximum Energy Output of a DFIG Wind Turbine Using an Improved MPPT-Curve Method," Energies, MDPI, vol. 8(10), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Sosnina & Andrey Dar’enkov & Andrey Kurkin & Ivan Lipuzhin & Andrey Mamonov, 2022. "Review of Efficiency Improvement Technologies of Wind Diesel Hybrid Systems for Decreasing Fuel Consumption," Energies, MDPI, vol. 16(1), pages 1-38, December.
    2. Jae Woong Shim & Heejin Kim & Kyeon Hur, 2019. "Incorporating State-of-Charge Balancing into the Control of Energy Storage Systems for Smoothing Renewable Intermittency," Energies, MDPI, vol. 12(7), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petković, Dalibor & Ćojbašič, Žarko & Nikolić, Vlastimir, 2013. "Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 191-195.
    2. Wang, Longyan & Cholette, Michael E. & Zhou, Yunkai & Yuan, Jianping & Tan, Andy C.C. & Gu, Yuantong, 2018. "Effectiveness of optimized control strategy and different hub height turbines on a real wind farm optimization," Renewable Energy, Elsevier, vol. 126(C), pages 819-829.
    3. Sergio Fragoso & Juan Garrido & Francisco Vázquez & Fernando Morilla, 2017. "Comparative Analysis of Decoupling Control Methodologies and H ∞ Multivariable Robust Control for Variable-Speed, Variable-Pitch Wind Turbines: Application to a Lab-Scale Wind Turbine," Sustainability, MDPI, vol. 9(5), pages 1-21, April.
    4. La Cava, William & Danai, Kourosh & Spector, Lee & Fleming, Paul & Wright, Alan & Lackner, Matthew, 2016. "Automatic identification of wind turbine models using evolutionary multiobjective optimization," Renewable Energy, Elsevier, vol. 87(P2), pages 892-902.
    5. Christoph M. Hackl & Pol Jané-Soneira & Martin Pfeifer & Korbinian Schechner & Sören Hohmann, 2018. "Full- and Reduced-Order State-Space Modeling of Wind Turbine Systems with Permanent Magnet Synchronous Generator," Energies, MDPI, vol. 11(7), pages 1-33, July.
    6. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    7. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    8. Phan, Dinh-Chung & Yamamoto, Shigeru, 2016. "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking," Energy, Elsevier, vol. 111(C), pages 377-388.
    9. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    10. Wang, Han & Yan, Jie & Han, Shuang & Liu, Yongqian, 2020. "Switching strategy of the low wind speed wind turbine based on real-time wind process prediction for the integration of wind power and EVs," Renewable Energy, Elsevier, vol. 157(C), pages 256-272.
    11. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    12. Rongyong Zhao & Daheng Dong & Cuiling Li & Steven Liu & Hao Zhang & Miyuan Li & Wenzhong Shen, 2020. "An Improved Power Control Approach for Wind Turbine Fatigue Balancing in an Offshore Wind Farm," Energies, MDPI, vol. 13(7), pages 1-20, March.
    13. Jiang, Yu & Song, Zhe & Kusiak, Andrew, 2013. "Very short-term wind speed forecasting with Bayesian structural break model," Renewable Energy, Elsevier, vol. 50(C), pages 637-647.
    14. Yancai Xiao & Tieling Zhang & Zeyu Ding & Chunya Li, 2016. "The Study of Fuzzy Proportional Integral Controllers Based on Improved Particle Swarm Optimization for Permanent Magnet Direct Drive Wind Turbine Converters," Energies, MDPI, vol. 9(5), pages 1-17, May.
    15. Yuan, Yuan & Chen, Xu & Tang, J., 2020. "Multivariable robust blade pitch control design to reject periodic loads on wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 329-341.
    16. Xiaobing Kong & Lele Ma & Xiangjie Liu & Mohamed Abdelkarim Abdelbaky & Qian Wu, 2020. "Wind Turbine Control Using Nonlinear Economic Model Predictive Control over All Operating Regions," Energies, MDPI, vol. 13(1), pages 1-21, January.
    17. Yuan, Yuan & Tang, J., 2017. "Adaptive pitch control of wind turbine for load mitigation under structural uncertainties," Renewable Energy, Elsevier, vol. 105(C), pages 483-494.
    18. Anicic, Obrad & Jovic, Srdjan, 2016. "Adaptive neuro-fuzzy approach for ducted tidal turbine performance estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1111-1116.
    19. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    20. Narayana, Mahinsasa & Sunderland, Keith M. & Putrus, Ghanim & Conlon, Michael F., 2017. "Adaptive linear prediction for optimal control of wind turbines," Renewable Energy, Elsevier, vol. 113(C), pages 895-906.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:939-:d:103833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.