IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p685-d98549.html
   My bibliography  Save this article

Modeling and Validation of a Diesel Engine with Turbocharger for Hardware-in-the-Loop Applications

Author

Listed:
  • Jinguan Yin

    (College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)

  • Tiexiong Su

    (College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)

  • Zhuowei Guan

    (China North Engine Research Institute, Tianjin 300400, China)

  • Quanhong Chu

    (China North Engine Research Institute, Tianjin 300400, China)

  • Changjiang Meng

    (China North Engine Research Institute, Tianjin 300400, China)

  • Li Jia

    (China North Engine Research Institute, Tianjin 300400, China)

  • Jun Wang

    (College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)

  • Yangang Zhang

    (College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)

Abstract

This paper presents a simulator model of a diesel engine with a turbocharger for hardware-in-the-loop (HIL) applications, which is used to obtain engine performance data to study the engine performance under faulty conditions, to assist engineers in diagnosis and estimation, and to assist engineers in model-based calibration (MBC). The whole diesel engine system is divided into several functional blocks: air block, injection block, cylinder block, crankshaft block, cooling block, lubrication block, and accessory block. The diesel engine model is based on physical level, semi-physical level and mathematical level concepts, and developed by Matlab/Simulink. All the model parameters are estimated using weighted least-squares optimization and the tuning process details are presented. Since the sub-model coupling may cause errors, the validation process is then given to make the model more accurate. The results show that the tuning process is important for the functional blocks and the validation process is useful for the accuracy of the whole engine model. Subsequently, this program could be used as a plant model for MBC, to develop and test engine control units (ECUs) on HIL equipment for the purpose of improving ECU performance.

Suggested Citation

  • Jinguan Yin & Tiexiong Su & Zhuowei Guan & Quanhong Chu & Changjiang Meng & Li Jia & Jun Wang & Yangang Zhang, 2017. "Modeling and Validation of a Diesel Engine with Turbocharger for Hardware-in-the-Loop Applications," Energies, MDPI, vol. 10(5), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:685-:d:98549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/685/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/685/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pizzonia, Francesco & Castiglione, Teresa & Bova, Sergio, 2016. "A Robust Model Predictive Control for efficient thermal management of internal combustion engines," Applied Energy, Elsevier, vol. 169(C), pages 555-566.
    2. Giakoumis, E.G. & Alafouzos, A.I., 2010. "Study of diesel engine performance and emissions during a Transient Cycle applying an engine mapping-based methodology," Applied Energy, Elsevier, vol. 87(4), pages 1358-1365, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Welbert A. Rodrigues & Thiago R. Oliveira & Lenin M. F. Morais & Arthur H. R. Rosa, 2018. "Voltage and Power Balance Strategy without Communication for a Modular Solid State Transformer Based on Adaptive Droop Control," Energies, MDPI, vol. 11(7), pages 1-20, July.
    2. Salah A. M. Elmoselhy & Waleed F. Faris & Hesham A. Rakha, 2022. "Validated Analytical Modeling of Eccentricity and Dynamic Displacement in Diesel Engines with Flexible Crankshaft," Energies, MDPI, vol. 15(16), pages 1-21, August.
    3. Qinpeng Wang & Heming Yao & Yonghua Yu & Jianguo Yang & Yuhai He, 2021. "Establishment of a Real-Time Simulation of a Marine High-Pressure Common Rail System," Energies, MDPI, vol. 14(17), pages 1-17, September.
    4. Haosheng Shen & Chuan Zhang & Jundong Zhang & Baicheng Yang & Baozhu Jia, 2019. "Applicable and Comparative Research of Compressor Mass Flow Rate and Isentropic Efficiency Empirical Models to Marine Large-Scale Compressor," Energies, MDPI, vol. 13(1), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    2. Mera, Zamir & Varella, Roberto & Baptista, Patrícia & Duarte, Gonçalo & Rosero, Fredy, 2022. "Including engine data for energy and pollutants assessment into the vehicle specific power methodology," Applied Energy, Elsevier, vol. 311(C).
    3. Zhongchang Liu & Xing Yuan & Jing Tian & Yongqiang Han & Runzhao Li & Guanlong Gao, 2018. "Investigation of Sectional-Stage Loading Strategies on a Two-Stage Turbocharged Heavy-Duty Diesel Engine under Transient Operation with EGR," Energies, MDPI, vol. 11(1), pages 1-19, January.
    4. Yum, Kevin Koosup & Lefebvre, Nicolas & Pedersen, Eilif, 2017. "An experimental investigation of the effects of cyclic transient loads on a turbocharged diesel engine," Applied Energy, Elsevier, vol. 185(P1), pages 472-481.
    5. Luján, José Manuel & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation," Energy, Elsevier, vol. 80(C), pages 614-627.
    6. Bishop, Justin D.K. & Stettler, Marc E.J. & Molden, N. & Boies, Adam M., 2016. "Engine maps of fuel use and emissions from transient driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 202-217.
    7. Tauzia, Xavier & Maiboom, Alain, 2013. "Experimental study of an automotive Diesel engine efficiency when running under stoichiometric conditions," Applied Energy, Elsevier, vol. 105(C), pages 116-124.
    8. Cheikh, Kezrane & Sary, Awad & Khaled, Loubar & Abdelkrim, Liazid & Mohand, Tazerout, 2016. "Experimental assessment of performance and emissions maps for biodiesel fueled compression ignition engine," Applied Energy, Elsevier, vol. 161(C), pages 320-329.
    9. Saravanan, N. & Nagarajan, G., 2010. "Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source," Applied Energy, Elsevier, vol. 87(7), pages 2218-2229, July.
    10. Evangelos G. Giakoumis & George Triantafillou, 2018. "Analysis of the Effect of Vehicle, Driving and Road Parameters on the Transient Performance and Emissions of a Turbocharged Truck," Energies, MDPI, vol. 11(2), pages 1-21, January.
    11. Benaitier, Alexis & Krainer, Ferdinand & Jakubek, Stefan & Hametner, Christoph, 2023. "Optimal energy management of hybrid electric vehicles considering pollutant emissions during transient operations," Applied Energy, Elsevier, vol. 344(C).
    12. Maroto Estrada, Pedro & de Lima, Daniela & Bauer, Peter H. & Mammetti, Marco & Bruno, Joan Carles, 2023. "Deep learning in the development of energy Management strategies of hybrid electric Vehicles: A hybrid modeling approach," Applied Energy, Elsevier, vol. 329(C).
    13. Jaehyun Bae & Jinwon Yun & Jaeyoung Han, 2024. "Performance and Efficiency Evaluation of a Secondary Loop Integrated Thermal Management System with a Multi-Port Valve for Electric Vehicles," Energies, MDPI, vol. 17(22), pages 1-22, November.
    14. Paolo Iodice & Giuseppe Langella & Amedeo Amoresano, 2017. "A numerical approach to assess air pollution by ship engines in manoeuvring mode and fuel switch conditions," Energy & Environment, , vol. 28(8), pages 827-845, December.
    15. Payri, R. & Salvador, F.J. & Gimeno, J. & De la Morena, J., 2011. "Influence of injector technology on injection and combustion development - Part 2: Combustion analysis," Applied Energy, Elsevier, vol. 88(4), pages 1130-1139, April.
    16. Giakoumis, Evangelos G., 2012. "A statistical investigation of biodiesel effects on regulated exhaust emissions during transient cycles," Applied Energy, Elsevier, vol. 98(C), pages 273-291.
    17. E, Jiaqiang & Liu, Guanlin & Zhang, Zhiqing & Han, Dandan & Chen, Jingwei & Wei, Kexiang & Gong, Jinke & Yin, Zibin, 2019. "Effect analysis on cold starting performance enhancement of a diesel engine fueled with biodiesel fuel based on an improved thermodynamic model," Applied Energy, Elsevier, vol. 243(C), pages 321-335.
    18. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & Fajle Rabbi Ashik & Mohammad Mahmudul Hassan & Md Tausif Murshed & Md Ashraful Imran & Md Hamidur Rahman & Md Akibur Rahman & Mohammad, 2021. "State-of-the-Art of Establishing Test Procedures for Real Driving Gaseous Emissions from Light- and Heavy-Duty Vehicles," Energies, MDPI, vol. 14(14), pages 1-32, July.
    19. Fatigati, Fabio & Di Bartolomeo, Marco & Cipollone, Roberto, 2022. "Development and experimental assessment of a Low Speed Sliding Rotary Vane Pump for heavy duty engine cooling systems," Applied Energy, Elsevier, vol. 327(C).
    20. Rakopoulos, C.D. & Dimaratos, A.M. & Giakoumis, E.G. & Rakopoulos, D.C., 2011. "Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends," Applied Energy, Elsevier, vol. 88(11), pages 3905-3916.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:685-:d:98549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.