IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p6083-d894502.html
   My bibliography  Save this article

Validated Analytical Modeling of Eccentricity and Dynamic Displacement in Diesel Engines with Flexible Crankshaft

Author

Listed:
  • Salah A. M. Elmoselhy

    (CFisUC, Department of Physics, University of Coimbra, P-3004 516 Coimbra, Portugal)

  • Waleed F. Faris

    (Department of Mechanical Engineering, International Islamic University Malaysia, Gombak, Kuala Lumpur 53100, Malaysia)

  • Hesham A. Rakha

    (Virginia Tech Transportation Institute, Virginia Polytechnic Institute and State University, 3500 Transportation Research Plaza, Blacksburg, VA 24061, USA)

Abstract

In spite of the fact that the flexibility of the crankshaft of diesel engines exhibits notable nonlinearities, analytical modeling of such nonlinearities is not yet realized. The present study thus analytically models the effect of eccentricity on flexible crankshaft and piston secondary motion. The eccentricity of the crankshaft is modeled as the summation of the hydrodynamic eccentricity and the dynamic mass eccentricity of the crankshaft. The study also models the absolute value of the vibrational dynamic displacement of the center of the crankshaft. The paper proves that such dynamic displacement of the center of the crankshaft is sensitive to the changes in its independent variables. It was found that the most influential parameters on the dynamic displacement of the center of the crankshaft due to vibration are the natural frequency and the eccentricity of the crankshaft. The modeling of the dynamic displacement in a flexible crankshaft was validated using a case study based on the eccentricity of the crankshaft showing a relative error of 4%, which is less than the relative error in the CMEM and GT-Power. Furthermore, the analytical modeling of the dynamic displacement in the flexible crankshaft was validated using another case study based on fatigue analysis of the crankshaft showing a relative error of 9%, which is less than that the relative error in Newman’s model of diesel engine fuel consumption and Lansky’s model of diesel engine cylinders. The paper also presents a proposed approach of fatigue failure analysis for vehicular dynamic components and presents a proposed nanostructure of crankshafts for improving such fatigue performance. The developed models would help develop efficient diesel engines and help prolong their service life.

Suggested Citation

  • Salah A. M. Elmoselhy & Waleed F. Faris & Hesham A. Rakha, 2022. "Validated Analytical Modeling of Eccentricity and Dynamic Displacement in Diesel Engines with Flexible Crankshaft," Energies, MDPI, vol. 15(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6083-:d:894502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/6083/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/6083/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinguan Yin & Tiexiong Su & Zhuowei Guan & Quanhong Chu & Changjiang Meng & Li Jia & Jun Wang & Yangang Zhang, 2017. "Modeling and Validation of a Diesel Engine with Turbocharger for Hardware-in-the-Loop Applications," Energies, MDPI, vol. 10(5), pages 1-17, May.
    2. P. W. G. Newman & B. Alimoradian & T. J. Lyons, 1989. "Estimating Fleet Fuel Consumption for Vans and Small Trucks," Transportation Science, INFORMS, vol. 23(1), pages 46-50, February.
    3. Salah A. M. Elmoselhy & Waleed F. Faris & Hesham A. Rakha, 2021. "Validated Analytical Modeling of Diesel Engines Intake Manifold with a Flexible Crankshaft," Energies, MDPI, vol. 14(5), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hua & Meng, Qiang & Zhang, Xiaoning, 2020. "Multiple equilibrium behaviors of auto travellers and a freight carrier under the cordon-based large-truck restriction regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    2. Welbert A. Rodrigues & Thiago R. Oliveira & Lenin M. F. Morais & Arthur H. R. Rosa, 2018. "Voltage and Power Balance Strategy without Communication for a Modular Solid State Transformer Based on Adaptive Droop Control," Energies, MDPI, vol. 11(7), pages 1-20, July.
    3. Qinpeng Wang & Heming Yao & Yonghua Yu & Jianguo Yang & Yuhai He, 2021. "Establishment of a Real-Time Simulation of a Marine High-Pressure Common Rail System," Energies, MDPI, vol. 14(17), pages 1-17, September.
    4. Haosheng Shen & Chuan Zhang & Jundong Zhang & Baicheng Yang & Baozhu Jia, 2019. "Applicable and Comparative Research of Compressor Mass Flow Rate and Isentropic Efficiency Empirical Models to Marine Large-Scale Compressor," Energies, MDPI, vol. 13(1), pages 1-32, December.
    5. Campbell, James F., 1995. "Using small trucks to circumvent large truck restrictions: Impacts on truck emissions and performance measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(6), pages 445-458, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6083-:d:894502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.