IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5729-d1521971.html
   My bibliography  Save this article

Performance and Efficiency Evaluation of a Secondary Loop Integrated Thermal Management System with a Multi-Port Valve for Electric Vehicles

Author

Listed:
  • Jaehyun Bae

    (Department of Mechanical Engineering, Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan-si 31080, Chungcheongnam-do, Republic of Korea)

  • Jinwon Yun

    (Department of Energy and Mineral Resources Engineering, Dong-A University, 37, Nakdong-daero 550beon-gil, Saha-gu, Busan 49315, Republic of Korea)

  • Jaeyoung Han

    (Department of Mechanical Engineering, Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan-si 31080, Chungcheongnam-do, Republic of Korea
    Department of Future Automotive Engineering, Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan-si 31080, Chungcheongnam-do, Republic of Korea
    Institute of Green Car Technology, Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan-si 31080, Chungcheongnam-do, Republic of Korea)

Abstract

Recently, battery electric vehicles (BEVs) have faced various technical challenges, such as reduced driving range due to ambient temperature, slow charging speeds, fire risks, and environmental regulations. This numerical study proposes an integrated thermal management system (ITMS) utilizing R290 refrigerant and a 14-way valve to address these issues, proactively meeting future environmental regulations, simplifying the system, and improving efficiency. The performance evaluation was conducted under high-load operating conditions, including driving and fast charging in various environmental conditions of 35 °C and −10 °C. As a result, the driving efficiency was 4.82 km/kWh in high-temperature conditions (35 °C) and 4.69 km/kWh in low-temperature conditions (−10 °C), which demonstrated higher efficiency than the Octovalve-ITMS applied to the Tesla Model Y. Furthermore, in fast charging tests, the high voltage battery was charged from a 10% to a 90% state of charge in 26 min at 35 °C and in 31 min at −10 °C, outperforming the Octovalve-ITMS-equipped Tesla Model Y’s fast charging time of 27 min under moderate ambient conditions. This result highlights the superior fast-charging performance of the 14-way valve-based ITMS, even under high cooling load conditions.

Suggested Citation

  • Jaehyun Bae & Jinwon Yun & Jaeyoung Han, 2024. "Performance and Efficiency Evaluation of a Secondary Loop Integrated Thermal Management System with a Multi-Port Valve for Electric Vehicles," Energies, MDPI, vol. 17(22), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5729-:d:1521971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pizzonia, Francesco & Castiglione, Teresa & Bova, Sergio, 2016. "A Robust Model Predictive Control for efficient thermal management of internal combustion engines," Applied Energy, Elsevier, vol. 169(C), pages 555-566.
    2. Yang, Chen, 2022. "Running battery electric vehicles with extended range: Coupling cost and energy analysis," Applied Energy, Elsevier, vol. 306(PB).
    3. Chalet, David & Lesage, Matisse & Cormerais, Mickaël & Marimbordes, Thierry, 2017. "Nodal modelling for advanced thermal-management of internal combustion engine," Applied Energy, Elsevier, vol. 190(C), pages 99-113.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatigati, Fabio & Di Bartolomeo, Marco & Cipollone, Roberto, 2022. "Development and experimental assessment of a Low Speed Sliding Rotary Vane Pump for heavy duty engine cooling systems," Applied Energy, Elsevier, vol. 327(C).
    2. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    3. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    4. Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
    5. Kabir A. Mamun & F. R. Islam & R. Haque & Aneesh A. Chand & Kushal A. Prasad & Krishneel K. Goundar & Krishneel Prakash & Sidharth Maharaj, 2022. "Systematic Modeling and Analysis of On-Board Vehicle Integrated Novel Hybrid Renewable Energy System with Storage for Electric Vehicles," Sustainability, MDPI, vol. 14(5), pages 1-33, February.
    6. Li, Shicheng & Xu, Lin & Du, Xiaofang & Wang, Nian & Lin, Feng & Abdelkareem, Mohamed A.A., 2023. "Combined single-pedal and low adhesion control systems for enhanced energy regeneration in electric vehicles: Modeling, simulation, and on-field test," Energy, Elsevier, vol. 269(C).
    7. Jinguan Yin & Tiexiong Su & Zhuowei Guan & Quanhong Chu & Changjiang Meng & Li Jia & Jun Wang & Yangang Zhang, 2017. "Modeling and Validation of a Diesel Engine with Turbocharger for Hardware-in-the-Loop Applications," Energies, MDPI, vol. 10(5), pages 1-17, May.
    8. Mo, Chongmao & Xie, Jiekai & Zhang, Guoqing & Zou, Zhiyang & Yang, Xiaoqing, 2024. "All-climate battery thermal management system integrating units-assembled phase change material module with forced air convection," Energy, Elsevier, vol. 294(C).
    9. Zhang, Lei & Huang, Lvwei & Zhang, Zhaosheng & Wang, Zhenpo & Dorrell, David D., 2022. "Degradation characteristics investigation for lithium-ion cells with NCA cathode during overcharging," Applied Energy, Elsevier, vol. 327(C).
    10. Huang, Xiaohui & Huang, Qi & Cao, Huajun & Wang, Qianyue & Yan, Wanbin & Cao, Le, 2023. "Battery capacity selection for electric construction machinery considering variable operating conditions and multiple interest claims," Energy, Elsevier, vol. 275(C).
    11. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    12. Davide Di Battista & Roberto Cipollone, 2017. "Improving Engine Oil Warm Up through Waste Heat Recovery," Energies, MDPI, vol. 11(1), pages 1-18, December.
    13. Liu, Xinglong & Zhao, Fuquan & Hao, Han & Liu, Zongwei, 2023. "Comparative analysis for different vehicle powertrains in terms of energy-saving potential and cost-effectiveness in China," Energy, Elsevier, vol. 276(C).
    14. Teresa Castiglione & Pietropaolo Morrone & Luigi Falbo & Diego Perrone & Sergio Bova, 2020. "Application of a Model-Based Controller for Improving Internal Combustion Engines Fuel Economy," Energies, MDPI, vol. 13(5), pages 1-22, March.
    15. Junhong Zhang & Zhexuan Xu & Jiewei Lin & Zefeng Lin & Jingchao Wang & Tianshu Xu, 2018. "Thermal Characteristics Investigation of the Internal Combustion Engine Cooling-Combustion System Using Thermal Boundary Dynamic Coupling Method and Experimental Verification," Energies, MDPI, vol. 11(8), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5729-:d:1521971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.