IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v29y2001i3p273-289.html
   My bibliography  Save this article

Insights into neural-network forecasting of time series corresponding to ARMA(p,q) structures

Author

Listed:
  • Hwarng, H. Brian

Abstract

Motivated by the lack of evidence supporting the conjecture that the back-propagation neural network (BPNN) is a universal approximator thus it can perform at least comparably to linear models on linear data, this study is designed to answer two primary research questions, namely, "how does the BPNN perform with respect to various underlying ARMA(p,q) structures?" and "how does the level of noise in the training time series affect the BPNN's performance?" The goal is to understand better the modelling and forecasting ability of BPNNs on a special class of time series and suggest proper training strategies to improve performance. Using Box-Jenkins models' performance as a benchmark, it is concluded that BPNNs generally performed well and consistently for time series corresponding to ARMA(p,q) structures. BPNNs' ability to model and forecast is not affected by the number of parameters but by the magnitude of the coefficients of the underlying structure. Overall, BPNNs perform significantly better for most of the structures when a particular noise level is considered during network training. Therefore, a proper strategy is to train networks at a noise level consistent in magnitude with the time series' sample standard deviation.

Suggested Citation

  • Hwarng, H. Brian, 2001. "Insights into neural-network forecasting of time series corresponding to ARMA(p,q) structures," Omega, Elsevier, vol. 29(3), pages 273-289, June.
  • Handle: RePEc:eee:jomega:v:29:y:2001:i:3:p:273-289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(01)00022-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Won Chul Jhee & Jae Kyu Lee, 1993. "Performance of Neural Networks in Managerial Forecasting," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 2(1), pages 55-71, January.
    2. Zhang, Gioqinang & Hu, Michael Y., 1998. "Neural network forecasting of the British Pound/US Dollar exchange rate," Omega, Elsevier, vol. 26(4), pages 495-506, August.
    3. Tim Hill & Marcus O'Connor & William Remus, 1996. "Neural Network Models for Time Series Forecasts," Management Science, INFORMS, vol. 42(7), pages 1082-1092, July.
    4. Winker, Kenneth E., 1984. "Criminal justice/criminology journal rankings: ASC versus ACJS: A response to Douglas Heckathorn's comment," Journal of Criminal Justice, Elsevier, vol. 12(4), pages 419-420.
    5. Klein, B. D. & Rossin, D. F., 1999. "Data quality in neural network models: effect of error rate and magnitude of error on predictive accuracy," Omega, Elsevier, vol. 27(5), pages 569-582, October.
    6. Ahn, Sung K. & Reinsel, Gregory C., 1994. "Estimation of partially nonstationary vector autoregressive models with seasonal behavior," Journal of Econometrics, Elsevier, vol. 62(2), pages 317-350, June.
    7. Chiang, W. -C. & Urban, T. L. & Baldridge, G. W., 1996. "A neural network approach to mutual fund net asset value forecasting," Omega, Elsevier, vol. 24(2), pages 205-215, April.
    8. Alwan, Layth C & Roberts, Harry V, 1988. "Time-Series Modeling for Statistical Process Control," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 87-95, January.
    9. Zaiyong Tang & Paul A. Fishwick, 1993. "Feedforward Neural Nets as Models for Time Series Forecasting," INFORMS Journal on Computing, INFORMS, vol. 5(4), pages 374-385, November.
    10. Indro, D. C. & Jiang, C. X. & Patuwo, B. E. & Zhang, G. P., 1999. "Predicting mutual fund performance using artificial neural networks," Omega, Elsevier, vol. 27(3), pages 373-380, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lakhwinder Pal Singh & Ravi Teja Challa, 2016. "Integrated Forecasting Using the Discrete Wavelet Theory and Artificial Intelligence Techniques to Reduce the Bullwhip Effect in a Supply Chain," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 17(2), pages 157-169, June.
    2. Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.
    3. Mishra, Sasmita & Padhy, Sudarsan, 2019. "An efficient portfolio construction model using stock price predicted by support vector regression," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    4. Mishra, Sasmita & Padhy, Sudarsan & Mishra, Satya Narayan & Misra, Satya Narayan, 2021. "A novel LASSO – TLBO – SVR hybrid model for an efficient portfolio construction," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    5. Sang Hyuk Kim & Hee Soo Lee & Han Jun Ko & Seung Hwan Jeong & Hyun Woo Byun & Kyong Joo Oh, 2018. "Pattern Matching Trading System Based on the Dynamic Time Warping Algorithm," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    6. Cadenas, Erasmo & Rivera, Wilfrido, 2009. "Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks," Renewable Energy, Elsevier, vol. 34(1), pages 274-278.
    7. Azadeh, A. & Ghaderi, S.F. & Anvari, M. & Saberi, M., 2007. "Performance assessment of electric power generations using an adaptive neural network algorithm," Energy Policy, Elsevier, vol. 35(6), pages 3155-3166, June.
    8. Tea Šestanović & Josip Arnerić, 2021. "Neural network structure identification in inflation forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 62-79, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwarng, H. Brian & Ang, H. T., 2001. "A simple neural network for ARMA(p,q) time series," Omega, Elsevier, vol. 29(4), pages 319-333, August.
    2. Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.
    3. Azadeh, A. & Ghaderi, S.F. & Anvari, M. & Saberi, M., 2007. "Performance assessment of electric power generations using an adaptive neural network algorithm," Energy Policy, Elsevier, vol. 35(6), pages 3155-3166, June.
    4. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    5. Zoran Vojinovic & Vojislav Kecman & Rainer Seidel, 2001. "A data mining approach to financial time series modelling and forecasting," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(4), pages 225-239, December.
    6. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    7. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
    8. Nghia Chu & Binh Dao & Nga Pham & Huy Nguyen & Hien Tran, 2022. "Predicting Mutual Funds' Performance using Deep Learning and Ensemble Techniques," Papers 2209.09649, arXiv.org, revised Jul 2023.
    9. DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
    10. Laura Fabregat-Aibar & Maria-Teresa Sorrosal-Forradellas & Glòria Barberà-Mariné & Antonio Terceño, 2021. "Can Artificial Neural Networks Predict the Survival Capacity of Mutual Funds? Evidence from Spain," Mathematics, MDPI, vol. 9(6), pages 1-10, March.
    11. Shaogao Lv & Yongchao Hou & Hongwei Zhou, 2019. "Financial Market Directional Forecasting With Stacked Denoising Autoencoder," Papers 1912.00712, arXiv.org.
    12. Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
    13. Ioannidis, Christos & Pasiouras, Fotios & Zopounidis, Constantin, 2010. "Assessing bank soundness with classification techniques," Omega, Elsevier, vol. 38(5), pages 345-357, October.
    14. Robert G. Biscontri, 2012. "A Radial Basis Function Approach To Earnings Forecast," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(1), pages 1-18, January.
    15. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    16. Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can Machine Learning Help to Select Portfolios of Mutual Funds?," Working Papers 1245, Barcelona School of Economics.
    17. Moisan, Stella & Herrera, Rodrigo & Clements, Adam, 2018. "A dynamic multiple equation approach for forecasting PM2.5 pollution in Santiago, Chile," International Journal of Forecasting, Elsevier, vol. 34(4), pages 566-581.
    18. Olmedo,E. & Velasco, F. & Valderas, J.M., 2007. "Caracterización no lineal y predicción no paramétrica en el IBEX35/Nonlinear Characterization and Predictions of IBEX 35," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 25, pages 815-842, Diciembre.
    19. Onsel Sahin, Sule & Ulengin, Fusun & Ulengin, Burc, 2004. "Using neural networks and cognitive mapping in scenario analysis: The case of Turkey's inflation dynamics," European Journal of Operational Research, Elsevier, vol. 158(1), pages 124-145, October.
    20. Marcos Álvarez-Díaz & Alberto Álvarez, 2002. "Predicción No-Lineal De Tipos De Cambio: Algoritmos Genéticos, Redes Neuronales Y Fusión De Datos," Working Papers 0205, Universidade de Vigo, Departamento de Economía Aplicada.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:29:y:2001:i:3:p:273-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.