IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v140y2017ip2p1387-1397.html
   My bibliography  Save this article

An integrated research for architecture-based energy management in sustainable airports

Author

Listed:
  • Uysal, Murat Pasa
  • Sogut, M. Ziya

Abstract

Energy Management (EM) has become crucial and much more complicated for airports with the introduction of various energy sources, technologies and different comfort requirements. Regarding the aviation industry as one of the major sources of global warming and air pollution, this situation becomes highly critical. However, the review of literature on Energy Management Information Systems (EMIS) for airports shows that the proposed solutions are usually domain-specific, platform-depended and away from suggesting complete solutions and architectures. Therefore, the main argument of this study is that a holistic and integrated approach should be adopted for EM in airports and we claim the notion of sustainability through the use of Enterprise Architecture (EA)-based EM. In this paper, we present the results of a two-faced research study. Action Research (AR) and Design Science Research (DSR) methods are combined to adopt an integrated approach. At the first phase, an EA is developed and evaluated, and then, this is followed by the second phase with three cases to find the potential energy savings in İstanbul Airport. Along with the findings, the primary and secondary contributions of this research brought to the EM knowledge domain are presented. Consequently, there is an important potential for energy saving in the terminal buildings, which would be approximately 70% of the total airport energy consumption. There is also a nearly 250.000 $/year potential saving, and also 121.397 $/year for the daylight time and period. This research can be seen as an initial attempt to the enhancement of sustainable airports, and therefore, it has showed the potential for using EAs as a means to improve EM in airports. We hope that this study may help researchers to obtain an overview of existing and possible approaches to sustainability through the use of EAs for EM practices.

Suggested Citation

  • Uysal, Murat Pasa & Sogut, M. Ziya, 2017. "An integrated research for architecture-based energy management in sustainable airports," Energy, Elsevier, vol. 140(P2), pages 1387-1397.
  • Handle: RePEc:eee:energy:v:140:y:2017:i:p2:p:1387-1397
    DOI: 10.1016/j.energy.2017.05.199
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217310174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.199?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
    2. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    3. Sergio Ortega Alba & Mario Manana, 2016. "Energy Research in Airports: A Review," Energies, MDPI, vol. 9(5), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Eid & May Salah & Mahmoud Barakat & Matevz Obrecht, 2022. "Airport Sustainability Awareness: A Theoretical Framework," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    2. Ming-Hui Liao & Chi-Tai Wang, 2021. "Using Enterprise Architecture to Integrate Lean Manufacturing, Digitalization, and Sustainability: A Lean Enterprise Case Study in the Chemical Industry," Sustainability, MDPI, vol. 13(9), pages 1-26, April.
    3. Lili Wan & Qiuping Peng & Jiuhe Wang & Yong Tian & Can Xu, 2020. "Evaluation of Airport Sustainability by the Synthetic Evaluation Method: A Case Study of Guangzhou Baiyun International Airport, China, from 2008 to 2017," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    4. Liu, Xiaochen & Zhang, Tao & Liu, Xiaohua & Li, Lingshan & Lin, Lin & Jiang, Yi, 2021. "Energy saving potential for space heating in Chinese airport terminals: The impact of air infiltration," Energy, Elsevier, vol. 215(PB).
    5. Ricardo Jorge Raimundo & Maria Emilia Baltazar & Sandra P. Cruz, 2023. "Sustainability in the Airports Ecosystem: A Literature Review," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
    6. Jia, Xibei & Buyle, Sven & Macário, Rosário, 2023. "Developing an airport sustainability evaluation index through composite indicator approach," Journal of Air Transport Management, Elsevier, vol. 113(C).
    7. Wang, Cheng & Guo, Xiaofeng & Zhu, Ye, 2019. "Energy saving with Optic-Variable Wall for stable air temperature control," Energy, Elsevier, vol. 173(C), pages 38-47.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Thalmann & Marc Vielle, 2019. "Lowering CO2 emissions in the Swiss transport sector," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-12, December.
    2. Enrico Mancinelli & Francesco Canestrari & Andrea Graziani & Umberto Rizza & Giorgio Passerini, 2021. "Sustainable Performances of Small to Medium-Sized Airports in the Adriatic Region," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    3. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    4. Thanh Ngo & Kan Wai Hong Tsui, 2022. "Estimating the confidence intervals for DEA efficiency scores of Asia-Pacific airlines," Operational Research, Springer, vol. 22(4), pages 3411-3434, September.
    5. Ying Li & Tai‐Yu Lin & Yung‐ho Chiu & Shu‐Ning Lin & Tzu‐Han Chang, 2021. "Impact of alliances and delay rate on airline performance," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(6), pages 1607-1618, September.
    6. Bosetti, Valentina & Longden, Thomas, 2013. "Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles," Energy Policy, Elsevier, vol. 58(C), pages 209-219.
    7. Yu, Ming-Miin & Rakshit, Ipsita, 2023. "Target setting for airlines incorporating CO2 emissions: The DEA bargaining approach," Journal of Air Transport Management, Elsevier, vol. 108(C).
    8. Tomita, Masaru & Fukumoto, Yusuke & Ishihara, Atsushi & Kobayashi, Yusuke & Akasaka, Tomoyuki & Suzuki, Kenji & Onji, Taiki, 2023. "Superconducting DC power transmission for subway lines that can reduce electric resistance and save energy," Energy, Elsevier, vol. 281(C).
    9. Paul Wolfram & Qingshi Tu & Niko Heeren & Stefan Pauliuk & Edgar G. Hertwich, 2021. "Material efficiency and climate change mitigation of passenger vehicles," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 494-510, April.
    10. Cui, Qiang & Li, Xin-yi, 2021. "Investigating the Profit Pollution Abatement Costs difference before and after the “Carbon neutral growth from 2020” strategy was proposed," Research in Transportation Economics, Elsevier, vol. 90(C).
    11. Sergio Ortega Alba & Mario Manana, 2017. "Characterization and Analysis of Energy Demand Patterns in Airports," Energies, MDPI, vol. 10(1), pages 1-35, January.
    12. Abdellah Menou & Risto Lahdelma & Pekka Salminen, 2022. "Multicriteria Decision Aiding for Planning Renewable Power Production at Moroccan Airports," Energies, MDPI, vol. 15(14), pages 1-20, July.
    13. Lu, Yanyu & Dong, Jiankai & Liu, Jing, 2020. "Zonal modelling for thermal and energy performance of large space buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Arne Höltl & Cathy Macharis & Klaas De Brucker, 2017. "Pathways to Decarbonise the European Car Fleet: A Scenario Analysis Using the Backcasting Approach," Energies, MDPI, vol. 11(1), pages 1-20, December.
    15. Aijun Liu & Qiuyun Zhu & Xiaohui Ji & Hui Lu & Sang-Bing Tsai, 2018. "Novel Method for Perceiving Key Requirements of Customer Collaboration Low-Carbon Product Design," IJERPH, MDPI, vol. 15(7), pages 1-32, July.
    16. Cai, Yongxia & Woollacott, Jared & Beach, Robert H. & Rafelski, Lauren E. & Ramig, Christopher & Shelby, Michael, 2023. "Insights from adding transportation sector detail into an economy-wide model: The case of the ADAGE CGE model," Energy Economics, Elsevier, vol. 123(C).
    17. Ebiyon Idundun & Andrew S. Hursthouse & Iain McLellan, 2021. "Carbon Management in UK Higher Education Institutions: An Overview," Sustainability, MDPI, vol. 13(19), pages 1-16, September.
    18. Cui, Qiang & Li, Ye & Wei, Yi-Ming, 2017. "Exploring the impacts of EU ETS on the pollution abatement costs of European airlines: An application of Network Environmental Production Function," Transport Policy, Elsevier, vol. 60(C), pages 131-142.
    19. Zhang, Runsen & Zhang, Junyi, 2021. "Long-term pathways to deep decarbonization of the transport sector in the post-COVID world," Transport Policy, Elsevier, vol. 110(C), pages 28-36.
    20. Seufert, Juergen Heinz & Arjomandi, Amir & Dakpo, K. Hervé, 2017. "Evaluating airline operational performance: A Luenberger-Hicks-Moorsteen productivity indicator," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 52-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:140:y:2017:i:p2:p:1387-1397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.