An Improvement in Biodiesel Production from Waste Cooking Oil by Applying Thought Multi-Response Surface Methodology Using Desirability Functions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Muhammad Waseem Mumtaz & Ahmad Adnan & Farooq Anwar & Hamid Mukhtar & Muhammad Asam Raza & Farooq Ahmad & Umer Rashid, 2012. "Response Surface Methodology: An Emphatic Tool for Optimized Biodiesel Production Using Rice Bran and Sunflower Oils," Energies, MDPI, vol. 5(9), pages 1-22, September.
- Shahid, Ejaz M. & Jamal, Younis, 2011. "Production of biodiesel: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4732-4745.
- Jack P. C. Kleijnen, 2015.
"Response Surface Methodology,"
International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104,
Springer.
- Kleijnen, Jack P.C., 2014. "Response Surface Methodology," Discussion Paper 2014-013, Tilburg University, Center for Economic Research.
- Kleijnen, Jack P.C., 2014. "Response Surface Methodology," Other publications TiSEM 7f9f17ee-db7f-4041-a686-d, Tilburg University, School of Economics and Management.
- Borges, M.E. & Díaz, L., 2012. "Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2839-2849.
- Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
- Lenth, Russell V., 2009. "Response-Surface Methods in R, Using rsm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i07).
- Enweremadu, C.C. & Mbarawa, M.M., 2009. "Technical aspects of production and analysis of biodiesel from used cooking oil--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2205-2224, December.
- Yuan, Xingzhong & Liu, Jia & Zeng, Guangming & Shi, Jingang & Tong, Jingyi & Huang, Guohe, 2008. "Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology," Renewable Energy, Elsevier, vol. 33(7), pages 1678-1684.
- Yaakob, Zahira & Mohammad, Masita & Alherbawi, Mohammad & Alam, Zahangir & Sopian, Kamaruzaman, 2013. "Overview of the production of biodiesel from Waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 184-193.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Marina Corral Bobadilla & Roberto Fernández Martínez & Rubén Lostado Lorza & Fátima Somovilla Gómez & Eliseo P. Vergara González, 2018. "Optimizing Biodiesel Production from Waste Cooking Oil Using Genetic Algorithm-Based Support Vector Machines," Energies, MDPI, vol. 11(11), pages 1-19, November.
- José María Encinar & Sergio Nogales & Juan Félix González, 2020. "The effect of BHA on oxidative stability of biodiesel from different sources," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1193-1201, December.
- Laureano Costarrosa & David Eduardo Leiva-Candia & Antonio José Cubero-Atienza & Juan José Ruiz & M. Pilar Dorado, 2018. "Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology," Energies, MDPI, vol. 11(2), pages 1-9, January.
- Md Sufi Ullah Siddik Bhuyan & Abul Hasnat Md Ashraful Alam & Younghwan Chu & Yong Chan Seo, 2017. "Biodiesel Production Potential from Littered Edible Oil Fraction Using Directly Synthesized S-TiO 2 /MCM-41 Catalyst in Esterification Process via Non-Catalytic Subcritical Hydrolysis," Energies, MDPI, vol. 10(9), pages 1-17, August.
- Sergio Nogales-Delgado & José María Encinar & Juan Félix González, 2019. "Safflower Biodiesel: Improvement of its Oxidative Stability by Using BHA and TBHQ," Energies, MDPI, vol. 12(10), pages 1-13, May.
- Francisco Anguebes-Franseschi & Mohamed Abatal & Ali Bassam & Mauricio A. Escalante Soberanis & Oscar May Tzuc & Lauro Bucio-Galindo & Atl Victor Cordova Quiroz & Claudia Alejandra Aguilar Ucan & Migu, 2018. "Esterification Optimization of Crude African Palm Olein Using Response Surface Methodology and Heterogeneous Acid Catalysis," Energies, MDPI, vol. 11(1), pages 1-15, January.
- Muhammad Nobi Hossain & Md Sufi Ullah Siddik Bhuyan & Abul Hasnat Md Ashraful Alam & Yong Chan Seo, 2018. "Biodiesel from Hydrolyzed Waste Cooking Oil Using a S-ZrO 2 /SBA-15 Super Acid Catalyst under Sub-Critical Conditions," Energies, MDPI, vol. 11(2), pages 1-13, January.
- Sri Kurniati & Sudjito Soeparman & Sudarminto Setyo Yuwono & Lukman Hakim & Sudirman Syam, 2019. "A Novel Process for Production of Calophyllum Inophyllum Biodiesel with Electromagnetic Induction," Energies, MDPI, vol. 12(3), pages 1-20, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marina Corral Bobadilla & Roberto Fernández Martínez & Rubén Lostado Lorza & Fátima Somovilla Gómez & Eliseo P. Vergara González, 2018. "Optimizing Biodiesel Production from Waste Cooking Oil Using Genetic Algorithm-Based Support Vector Machines," Energies, MDPI, vol. 11(11), pages 1-19, November.
- Pourzolfaghar, Hamed & Abnisa, Faisal & Daud, Wan Mohd Ashri Wan & Aroua, Mohamed Kheireddine, 2016. "A review of the enzymatic hydroesterification process for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 245-257.
- Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
- Marta Ramos & Ana Paula Soares Dias & Jaime Filipe Puna & João Gomes & João Carlos Bordado, 2019. "Biodiesel Production Processes and Sustainable Raw Materials," Energies, MDPI, vol. 12(23), pages 1-30, November.
- Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
- Nitièma-Yefanova, Svitlana & Coniglio, Lucie & Schneider, Raphaël & Nébié, Roger H.C. & Bonzi-Coulibaly, Yvonne L., 2016. "Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds – Laboratory scale development," Renewable Energy, Elsevier, vol. 96(PA), pages 881-890.
- Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
- Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
- Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
- Behdad Shadidi & Gholamhassan Najafi & Mohammad Ali Zolfigol, 2022. "A Review of the Existing Potentials in Biodiesel Production in Iran," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
- Esonye, Chizoo & Onukwuli, Okechukwu Dominic & Ofoefule, Akuzuo Uwaoma, 2019. "Optimization of methyl ester production from Prunus Amygdalus seed oil using response surface methodology and Artificial Neural Networks," Renewable Energy, Elsevier, vol. 130(C), pages 61-72.
- Jesús Andrés Tavizón-Pozos & Gerardo Chavez-Esquivel & Víctor Alejandro Suárez-Toriello & Carlos Eduardo Santolalla-Vargas & Oscar Abel Luévano-Rivas & Omar Uriel Valdés-Martínez & Alfonso Talavera-Ló, 2021. "State of Art of Alkaline Earth Metal Oxides Catalysts Used in the Transesterification of Oils for Biodiesel Production," Energies, MDPI, vol. 14(4), pages 1-24, February.
- Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
- Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Chong, W.T. & Boosroh, M.H., 2013. "Overview properties of biodiesel diesel blends from edible and non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 346-360.
- Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
- Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
- Murphy, Fionnuala & Devlin, Ger & Deverell, Rory & McDonnell, Kevin, 2014. "Potential to increase indigenous biodiesel production to help meet 2020 targets – An EU perspective with a focus on Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 154-170.
- Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
- Mostafaei, Mostafa & Javadikia, Hossein & Naderloo, Leila, 2016. "Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: Comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy," Energy, Elsevier, vol. 115(P1), pages 626-636.
- Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
More about this item
Keywords
biodiesel; waste cooking oil; catalysis; multi-response surface methodology;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:130-:d:88409. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.