IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p708-d98946.html
   My bibliography  Save this article

Bifurcation Phenomena Studies of a Voltage Controlled Buck-Inverter Cascade System

Author

Listed:
  • Xiaofei Li

    (School of Automation, Chongqing University, Chongqing 400044, China)

  • Chunsen Tang

    (School of Automation, Chongqing University, Chongqing 400044, China)

  • Xin Dai

    (School of Automation, Chongqing University, Chongqing 400044, China)

  • Aiguo Patrick Hu

    (Department of Electrical and Computer Engineering, The University of Auckland, 1142 Auckland, New Zealand)

  • Sing Kiong Nguang

    (Department of Electrical and Computer Engineering, The University of Auckland, 1142 Auckland, New Zealand)

Abstract

This paper studies the complex bifurcation phenomena of a voltage-controlled Buck-inverter cascade system. A state-flow chart is drawn to illustrate the complex relations among the linear operating modes. Combined with the state transition function of each mode, the time response of the system can be obtained. For period-one steady state, the periodic mapping function and its fixed point are further derived, on the basis of which the Jacobi matrix is developed and its maximum eigenvalue is analyzed to understand the bifurcation diagram. By globally analyzing the state space using this cell mapping method, the coexistence of attractors is revealed in the Buck-inverter system. All theoretical results have been verified experimentally on a prototype system. The results obtained can be used for guiding the design and analysis of the Buck-inverter system. The analyzing method can be helpful for studying other power electronics systems with compound topologies.

Suggested Citation

  • Xiaofei Li & Chunsen Tang & Xin Dai & Aiguo Patrick Hu & Sing Kiong Nguang, 2017. "Bifurcation Phenomena Studies of a Voltage Controlled Buck-Inverter Cascade System," Energies, MDPI, vol. 10(5), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:708-:d:98946
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang Hu & Yibing Liu & Wei Teng & Chao Zhou, 2016. "Nonlinear Coupled Dynamics of a Rod Fastening Rotor under Rub-Impact and Initial Permanent Deflection," Energies, MDPI, vol. 9(11), pages 1-19, October.
    2. Yuyu Geng & Bin Li & Zhongping Yang & Fei Lin & Hu Sun, 2017. "A High Efficiency Charging Strategy for a Supercapacitor Using a Wireless Power Transfer System Based on Inductor/Capacitor/Capacitor (LCC) Compensation Topology," Energies, MDPI, vol. 10(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liying Huang & Dongyuan Qiu & Fan Xie & Yanfeng Chen & Bo Zhang, 2017. "Modeling and Stability Analysis of a Single-Phase Two-Stage Grid-Connected Photovoltaic System," Energies, MDPI, vol. 10(12), pages 1-14, December.
    2. Zhenxiong Luo & Fan Xie & Bo Zhang & Dongyuan Qiu, 2018. "Quantifying the Nonlinear Dynamic Behavior of the DC-DC Converter via Permutation Entropy," Energies, MDPI, vol. 11(10), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shichun Yang & Xiaoyu Yan & Hong He & Peng Yang & Zhaoxia Peng & Haigang Cui, 2018. "Control Strategy for Vehicle Inductive Wireless Charging Based on Load Adaptive and Frequency Adjustment," Energies, MDPI, vol. 11(5), pages 1-23, May.
    2. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    3. Chao Fu & Dong Zhen & Yongfeng Yang & Fengshou Gu & Andrew Ball, 2019. "Effects of Bounded Uncertainties on the Dynamic Characteristics of an Overhung Rotor System with Rubbing Fault," Energies, MDPI, vol. 12(22), pages 1-15, November.
    4. Jianyang Zhai & Xudong Zhang & Shiqi Zhao & Yuan Zou, 2023. "Modeling and Experiments of a Wireless Power Transfer System Considering Scenarios from In-Wheel-Motor Applications," Energies, MDPI, vol. 16(2), pages 1-20, January.
    5. Li Zhai & Yu Cao & Liwen Lin & Tao Zhang & Steven Kavuma, 2018. "Mitigation Conducted Emission Strategy Based on Transfer Function from a DC-Fed Wireless Charging System for Electric Vehicles," Energies, MDPI, vol. 11(3), pages 1-17, February.
    6. Kalina Detka & Krzysztof Górecki, 2022. "Wireless Power Transfer—A Review," Energies, MDPI, vol. 15(19), pages 1-21, October.
    7. Naghmash Ali & Zhizhen Liu & Hammad Armghan & Iftikhar Ahmad & Yanjin Hou, 2021. "LCC-S-Based Integral Terminal Sliding Mode Controller for a Hybrid Energy Storage System Using a Wireless Power System," Energies, MDPI, vol. 14(6), pages 1-25, March.
    8. Pedro J. Villegas & Juan A. Martín-Ramos & Juan Díaz & Juan Á. Martínez & Miguel J. Prieto & Alberto M. Pernía, 2017. "A Digitally Controlled Power Converter for an Electrostatic Precipitator," Energies, MDPI, vol. 10(12), pages 1-24, December.
    9. Francisco Javier López-Alcolea & Javier Vázquez & Emilio J. Molina-Martínez & Pedro Roncero-Sánchez & Alfonso Parreño Torres, 2020. "Monte-Carlo Analysis of the Influence of the Electrical Component Tolerances on the Behavior of Series-Series- and LCC-Compensated IPT Systems," Energies, MDPI, vol. 13(14), pages 1-28, July.
    10. Naghmash Ali & Zhizhen Liu & Yanjin Hou & Hammad Armghan & Xiaozhao Wei & Ammar Armghan, 2020. "LCC-S Based Discrete Fast Terminal Sliding Mode Controller for Efficient Charging through Wireless Power Transfer," Energies, MDPI, vol. 13(6), pages 1-18, March.
    11. Tianqing Li & Xiangzhou Wang & Shuhua Zheng & Chunhua Liu, 2018. "An Efficient Topology for Wireless Power Transfer over a Wide Range of Loading Conditions," Energies, MDPI, vol. 11(1), pages 1-16, January.
    12. Vincenzo Cirimele & Fabio Freschi & Paolo Guglielmi, 2018. "Scaling Rules at Constant Frequency for Resonant Inductive Power Transfer Systems for Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-17, July.
    13. Yi Wang & Fei Lin & Zhongping Yang & Zhiyuan Liu, 2017. "Analysis of the Influence of Compensation Capacitance Errors of a Wireless Power Transfer System with SS Topology," Energies, MDPI, vol. 10(12), pages 1-14, December.
    14. Yuyu Geng & Tao Wang & Shiyun Xie & Yi Yang, 2022. "Analysis and Design of Wireless Power Transfer Systems Applied to Electrical Vehicle Supercapacitor Charge Using Variable-Resistance-Based Method," Energies, MDPI, vol. 15(16), pages 1-15, August.
    15. Qichang Duan & Yanling Li & Xin Dai & Tao Zou, 2017. "A Novel High Controllable Voltage Gain Push-Pull Topology for Wireless Power Transfer System," Energies, MDPI, vol. 10(4), pages 1-13, April.
    16. Vladimir Kindl & Martin Zavrel & Pavel Drabek & Tomas Kavalir, 2018. "High Efficiency and Power Tracking Method for Wireless Charging System Based on Phase-Shift Control," Energies, MDPI, vol. 11(8), pages 1-19, August.
    17. Li Ji & Lifang Wang & Chenglin Liao & Shufan Li, 2017. "Crosstalk Study of Simultaneous Wireless Power/Information Transmission Based on an LCC Compensation Network," Energies, MDPI, vol. 10(10), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:708-:d:98946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.