IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v4y2011i12p2236-2248d15239.html
   My bibliography  Save this article

Reliability Assessment of Solder Joints in Power Electronic Modules by Crack Damage Model for Wind Turbine Applications

Author

Listed:
  • Erik E. Kostandyan

    (Department of Civil Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark)

  • John D. Sørensen

    (Department of Civil Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark)

Abstract

Wind turbine reliability is an important issue for wind energy cost minimization, especially by reduction of operation and maintenance costs for critical components and by increasing wind turbine availability. To develop an optimal operation and maintenance plan for critical components, it is necessary to understand the physics of their failure and be able to develop reliability prediction models. Such a model is proposed in this paper for an IGBT power electronic module. IGBTs are critical components in wind turbine converter systems. These are multilayered devices where layers are soldered to each other and they operate at a thermal-power cycling environment. Temperature loadings affect the reliability of soldered joints by developing cracks and fatigue processes that eventually result in failure. Based on Miner’s rule a linear damage model that incorporates a crack development and propagation processes is discussed. A statistical analysis is performed for appropriate model parameter selection. Based on the proposed model, a layout for component life prediction with crack movement is described in details.

Suggested Citation

  • Erik E. Kostandyan & John D. Sørensen, 2011. "Reliability Assessment of Solder Joints in Power Electronic Modules by Crack Damage Model for Wind Turbine Applications," Energies, MDPI, vol. 4(12), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:4:y:2011:i:12:p:2236-2248:d:15239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/4/12/2236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/4/12/2236/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo-Ying Liu & Gao-Sheng Wang & Ming-Lang Tseng & Zhi-Gang Li & Kuo-Jui Wu, 2018. "New Energy Empowerment Using Kernel Principal Component Analysis in Insulated Gate Bipolar Transistors Module Monitoring," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    2. Yancai Xiao & Ruolan Dai & Guangjian Zhang & Weijia Chen, 2017. "The Use of an Improved LSSVM and Joint Normalization on Temperature Prediction of Gearbox Output Shaft in DFWT," Energies, MDPI, vol. 10(11), pages 1-13, November.
    3. Mansouri, M.Mahdi & Nayeripour, Majid & Negnevitsky, Michael, 2016. "Internal electrical protection of wind turbine with doubly fed induction generator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 840-855.
    4. Liao, Ding & Zhu, Shun-Peng & Correia, José A.F.O. & De Jesus, Abílio M.P. & Veljkovic, Milan & Berto, Filippo, 2022. "Fatigue reliability of wind turbines: historical perspectives, recent developments and future prospects," Renewable Energy, Elsevier, vol. 200(C), pages 724-742.
    5. Zilang Hu & Xinglai Ge & Dong Xie & Yichi Zhang & Bo Yao & Jian Dai & Fengbo Yang, 2019. "An Aging-Degree Evaluation Method for IGBT Bond Wire with Online Multivariate Monitoring," Energies, MDPI, vol. 12(20), pages 1-18, October.
    6. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:4:y:2011:i:12:p:2236-2248:d:15239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.