IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1864-d118856.html
   My bibliography  Save this article

Progress on Protection Strategies to Mitigate the Impact of Renewable Distributed Generation on Distribution Systems

Author

Listed:
  • Mohamad Norshahrani

    (Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
    Public Works Department, Menara Kerja Raya, Jalan Sultan Salahuddin, 50580 Kuala Lumpur, Malaysia)

  • Hazlie Mokhlis

    (Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia)

  • Ab. Halim Abu Bakar

    (University of Malaya Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D UM, University of Malaya, 59990 Kuala Lumpur, Malaysia)

  • Jasrul Jamani Jamian

    (Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia)

  • Shivashankar Sukumar

    (Institute of Power Engineering (IPE), Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia)

Abstract

The benefits of distributed generation (DG) based on renewable energy sources leads to its high integration in the distribution network (DN). Despite its well-known benefits, mainly in improving the distribution system reliability and security, there are challenges encountered from a protection system perspective. Traditionally, the design and operation of the protection system are based on a unidirectional power flow in the distribution network. However, the integration of distributed generation causes multidirectional power flows in the system. Therefore, the existing protection systems require some improvement or modification to address this new feature. Various protection strategies for distribution system have been proposed so that the benefits of distributed generation can be fully utilized. This paper reviews the current progress in protection strategies to mitigate the impact of distributed generation in the distribution network. In general, the reviewed strategies in this paper are divided into: (1) conventional protection systems and (2) modifications of the protection systems. A comparative study is presented in terms of the respective benefits, shortcomings and implementation cost. Future directions for research in this area are also presented.

Suggested Citation

  • Mohamad Norshahrani & Hazlie Mokhlis & Ab. Halim Abu Bakar & Jasrul Jamani Jamian & Shivashankar Sukumar, 2017. "Progress on Protection Strategies to Mitigate the Impact of Renewable Distributed Generation on Distribution Systems," Energies, MDPI, vol. 10(11), pages 1-30, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1864-:d:118856
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1864/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1864/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Chen & Hongkun Chen & Jun Yang & Yanjuan Yu & Kaiwei Zhen & Yang Liu & Li Ren, 2017. "Coordinated Control of Superconducting Fault Current Limiter and Superconducting Magnetic Energy Storage for Transient Performance Enhancement of Grid-Connected Photovoltaic Generation System," Energies, MDPI, vol. 10(1), pages 1-23, January.
    2. Kennedy, Joel & Ciufo, Phil & Agalgaonkar, Ashish, 2016. "A review of protection systems for distribution networks embedded with renewable generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1308-1317.
    3. Badran, Ola & Mekhilef, Saad & Mokhlis, Hazlie & Dahalan, Wardiah, 2017. "Optimal reconfiguration of distribution system connected with distributed generations: A review of different methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 854-867.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mostafa Bakkar & Santiago Bogarra & Felipe Córcoles & Ahmed Aboelhassan & Shuo Wang & Javier Iglesias, 2022. "Artificial Intelligence-Based Protection for Smart Grids," Energies, MDPI, vol. 15(13), pages 1-18, July.
    2. Muntathir Al Talaq & Mohammad Al-Muhaini, 2022. "Optimal Coordination of Time Delay Overcurrent Relays for Power Systems with Integrated Renewable Energy Sources," Energies, MDPI, vol. 15(18), pages 1-14, September.
    3. Krzysztof Lowczowski & Jozef Lorenc & Jozef Zawodniak & Grzegorz Dombek, 2020. "Detection and Location of Earth Fault in MV Feeders Using Screen Earthing Current Measurements," Energies, MDPI, vol. 13(5), pages 1-24, March.
    4. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    5. Metin Varan & Ali Erduman & Furkan Menevşeoğlu, 2023. "A Grey Wolf Optimization Algorithm-Based Optimal Reactive Power Dispatch with Wind-Integrated Power Systems," Energies, MDPI, vol. 16(13), pages 1-28, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Tian & Zetao Li & Zhenghang Hao, 2019. "A Doubly-Fed Induction Generator Adaptive Control Strategy and Coordination Technology Compatible with Feeder Automation," Energies, MDPI, vol. 12(23), pages 1-21, November.
    2. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    3. Md Shafiul Alam & Mohammad Ali Yousef Abido, 2017. "Fault Ride-through Capability Enhancement of Voltage Source Converter-High Voltage Direct Current Systems with Bridge Type Fault Current Limiters," Energies, MDPI, vol. 10(11), pages 1-19, November.
    4. Alex Guamán & Alex Valenzuela, 2021. "Distribution Network Reconfiguration Applied to Multiple Faulty Branches Based on Spanning Tree and Genetic Algorithms," Energies, MDPI, vol. 14(20), pages 1-16, October.
    5. Md Shafiul Alam & Fahad Saleh Al-Ismail & Mohammad Ali Abido, 2021. "PV/Wind-Integrated Low-Inertia System Frequency Control: PSO-Optimized Fractional-Order PI-Based SMES Approach," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    6. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    7. Hamza M. Bakr & Mostafa F. Shaaban & Ahmed H. Osman & Hatem F. Sindi, 2020. "Optimal Allocation of Distributed Generation Considering Protection," Energies, MDPI, vol. 13(9), pages 1-18, May.
    8. Fan, Dongming & Ren, Yi & Feng, Qiang & Liu, Yiliu & Wang, Zili & Lin, Jing, 2021. "Restoration of smart grids: Current status, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Fatma Yaprakdal & Mustafa Baysal & Amjad Anvari-Moghaddam, 2019. "Optimal Operational Scheduling of Reconfigurable Microgrids in Presence of Renewable Energy Sources," Energies, MDPI, vol. 12(10), pages 1-17, May.
    10. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Kakran, Sandeep & Chanana, Saurabh, 2018. "Smart operations of smart grids integrated with distributed generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 524-535.
    12. Nurul A. A. Latiff & Hazlee A. Illias & Ab H. A. Bakar & Sameh Z. A. Dabbak, 2018. "Measurement and Modelling of Leakage Current Behaviour in ZnO Surge Arresters under Various Applied Voltage Amplitudes and Pollution Conditions," Energies, MDPI, vol. 11(4), pages 1-16, April.
    13. Andriy Chaban & Zbigniew Lukasik & Marek Lis & Andrzej Szafraniec, 2020. "Mathematical Modeling of Transient Processes in Magnetic Suspension of Maglev Trains," Energies, MDPI, vol. 13(24), pages 1-17, December.
    14. Xiancheng Wang & Thiruvenkadam Srinivasan & Hyuntae Kim & In-ho Ra, 2020. "Exploration of DG Placement Strategy of Microgrids via FMFO Algorithm: Considering Increasing Power Demand and Diverse DG Combinations," Energies, MDPI, vol. 13(24), pages 1-24, December.
    15. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    16. Shobole, Abdulfetah Abdela & Wadi, Mohammed, 2021. "Multiagent systems application for the smart grid protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Uzair, Muhammad & Li, Li & Eskandari, Mohsen & Hossain, Jahangir & Zhu, Jian Guo, 2023. "Challenges, advances and future trends in AC microgrid protection: With a focus on intelligent learning methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    18. Maen Z. Kreishan & Ahmed F. Zobaa, 2021. "Optimal Allocation and Operation of Droop-Controlled Islanded Microgrids: A Review," Energies, MDPI, vol. 14(15), pages 1-45, July.
    19. Ibrahim Diaaeldin & Shady Abdel Aleem & Ahmed El-Rafei & Almoataz Abdelaziz & Ahmed F. Zobaa, 2019. "Optimal Network Reconfiguration in Active Distribution Networks with Soft Open Points and Distributed Generation," Energies, MDPI, vol. 12(21), pages 1-31, November.
    20. Mbuli, N. & Ngaha, W.S., 2022. "A survey of big bang big crunch optimisation in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1864-:d:118856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.