IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5021-d1181961.html
   My bibliography  Save this article

A Grey Wolf Optimization Algorithm-Based Optimal Reactive Power Dispatch with Wind-Integrated Power Systems

Author

Listed:
  • Metin Varan

    (Department of Electrical & Electronics Engineering, Faculty of Technology, Sakarya University of Applied Sciences, 54187 Serdivan, Turkey)

  • Ali Erduman

    (Department of Electric and Energy, Sakarya Vocational School, Sakarya University of Applied Sciences, 54290 Camili, Turkey)

  • Furkan Menevşeoğlu

    (Department of Electrical & Electronics Engineering, Institute of Natural Sceince, Sakarya University of Applied Sciences, 54187 Serdivan, Turkey)

Abstract

Keeping the bus voltage within acceptable limits depends on dispatching reactive power. Power quality improves as a result of creating an effective power flow system, which also helps to reduce power loss. Therefore, optimal reactive power dispatch (ORPD) studies aim at designing appropriate system configurations to enable a reliable operation of power systems. Establishment of such a configuration is handled through control variables in power systems. Various control variables, such as adjusting generator bus voltages, transformer tap locations, and switchable shunt capacitor sizes, are utilized to achieve this objective. Additionally, the integration of wind power can greatly impact power quality and mitigate power loss. In this study, the Grey Wolf Optimization (GWO) approach was applied to the ORPD issue for the first time to discover the best placement of newly installed wind power in the power system while taking into account tap changer settings, shunt capacitor sizes, and generated power levels. The main objective was to determine optimal wind placement to minimize power loss and voltage deviation, while maintaining control variables within specified limits. On the basis of IEEE 30-bus and IEEE 118-bus systems, the performance of the proposed method was investigated. The results demonstrated the superiority of GWO in multiple scenarios. In IEEE-30, GWO outperformed the PSO, GA, ABC, OGSA, HBMO, and HFA methods, reducing total loss by 10.36%, 18.03%, 9.19%, 7.13%, 5.23%, and 7.73%, respectively, and voltage deviation by 68.00%, 1.59%, 36.34%, 41.97%, 46.29%, and 71.08%, respectively. In wind integration scenarios, GWO achieved the simultaneous reduction of power loss and voltage deviation. In IEEE-118, GWO outperformed the ABC, PSO, GSA, and CFA methods, reducing power loss by approximately 19.91%, 16.83%, 14.09%, and 4.36%, respectively, and voltage deviation by 8.50%, 14.15%, 16.19%, and 7.17%, respectively. These promising results highlighted the potential of the GWO algorithm to facilitate the integration of renewable energy sources, and its role in promoting sustainable energy solutions. In addition, this study conducted an analysis to investigate site-specific wind placement by using the Weibull distribution function and commercial wind turbines.

Suggested Citation

  • Metin Varan & Ali Erduman & Furkan Menevşeoğlu, 2023. "A Grey Wolf Optimization Algorithm-Based Optimal Reactive Power Dispatch with Wind-Integrated Power Systems," Energies, MDPI, vol. 16(13), pages 1-28, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5021-:d:1181961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed A. M. Shaheen & Dalia Yousri & Ahmed Fathy & Hany M. Hasanien & Abdulaziz Alkuhayli & S. M. Muyeen, 2020. "A Novel Application of Improved Marine Predators Algorithm and Particle Swarm Optimization for Solving the ORPD Problem," Energies, MDPI, vol. 13(21), pages 1-23, October.
    2. Mohamad Norshahrani & Hazlie Mokhlis & Ab. Halim Abu Bakar & Jasrul Jamani Jamian & Shivashankar Sukumar, 2017. "Progress on Protection Strategies to Mitigate the Impact of Renewable Distributed Generation on Distribution Systems," Energies, MDPI, vol. 10(11), pages 1-30, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Lowczowski & Jozef Lorenc & Jozef Zawodniak & Grzegorz Dombek, 2020. "Detection and Location of Earth Fault in MV Feeders Using Screen Earthing Current Measurements," Energies, MDPI, vol. 13(5), pages 1-24, March.
    2. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    3. Mostafa Bakkar & Santiago Bogarra & Felipe Córcoles & Ahmed Aboelhassan & Shuo Wang & Javier Iglesias, 2022. "Artificial Intelligence-Based Protection for Smart Grids," Energies, MDPI, vol. 15(13), pages 1-18, July.
    4. Khizer Mehmood & Naveed Ishtiaq Chaudhary & Zeshan Aslam Khan & Khalid Mehmood Cheema & Muhammad Asif Zahoor Raja & Ahmad H. Milyani & Abdullah Ahmed Azhari, 2022. "Nonlinear Hammerstein System Identification: A Novel Application of Marine Predator Optimization Using the Key Term Separation Technique," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    5. Muntathir Al Talaq & Mohammad Al-Muhaini, 2022. "Optimal Coordination of Time Delay Overcurrent Relays for Power Systems with Integrated Renewable Energy Sources," Energies, MDPI, vol. 15(18), pages 1-14, September.
    6. Shaheen, Mohamed A.M. & Ullah, Zia & Hasanien, Hany M. & Tostado-Véliz, Marcos & Ji, Haoran & Qais, Mohammed H. & Alghuwainem, Saad & Jurado, Francisco, 2023. "Enhanced transient search optimization algorithm-based optimal reactive power dispatch including electric vehicles," Energy, Elsevier, vol. 277(C).
    7. Mohamed A. M. Shaheen & Hany M. Hasanien & Rania A. Turky & Martin Ćalasan & Ahmed F. Zobaa & Shady H. E. Abdel Aleem, 2021. "OPF of Modern Power Systems Comprising Renewable Energy Sources Using Improved CHGS Optimization Algorithm," Energies, MDPI, vol. 14(21), pages 1-21, October.
    8. Hasanien, Hany M. & Shaheen, Mohamed A.M. & Turky, Rania A. & Qais, Mohammed H. & Alghuwainem, Saad & Kamel, Salah & Tostado-Véliz, Marcos & Jurado, Francisco, 2022. "Precise modeling of PEM fuel cell using a novel Enhanced Transient Search Optimization algorithm," Energy, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5021-:d:1181961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.