IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1645-d115489.html
   My bibliography  Save this article

Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

Author

Listed:
  • Kasper T. Møller

    (Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark)

  • Drew Sheppard

    (Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
    Department of Physics and Astronomy, Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia)

  • Dorthe B. Ravnsbæk

    (Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark)

  • Craig E. Buckley

    (Department of Physics and Astronomy, Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia)

  • Etsuo Akiba

    (International Research Center for Hydrogen Energy, Kyushu University, Fukuoka 819-0395, Japan
    WPI International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
    Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan)

  • Hai-Wen Li

    (Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
    International Research Center for Hydrogen Energy, Kyushu University, Fukuoka 819-0395, Japan
    WPI International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
    Kyushu University Platform of Inter/Transdisciplinary Energy Research, Fukuoka 819-0395, Japan)

  • Torben R. Jensen

    (Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark)

Abstract

Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.

Suggested Citation

  • Kasper T. Møller & Drew Sheppard & Dorthe B. Ravnsbæk & Craig E. Buckley & Etsuo Akiba & Hai-Wen Li & Torben R. Jensen, 2017. "Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage," Energies, MDPI, vol. 10(10), pages 1-30, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1645-:d:115489
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ping Chen & Zhitao Xiong & Jizhong Luo & Jianyi Lin & Kuang Lee Tan, 2002. "Interaction of hydrogen with metal nitrides and imides," Nature, Nature, vol. 420(6913), pages 302-304, November.
    2. Daniele Meggiolaro & Luca Farina & Laura Silvestri & Stefania Panero & Sergio Brutti & Priscilla Reale, 2016. "Lightweight Borohydrides Electro-Activity in Lithium Cells," Energies, MDPI, vol. 9(4), pages 1-11, March.
    3. Paskevicius, M. & Sheppard, D.A. & Williamson, K. & Buckley, C.E., 2015. "Metal hydride thermal heat storage prototype for concentrating solar thermal power," Energy, Elsevier, vol. 88(C), pages 469-477.
    4. Ewa C. E. Rönnebro & Greg Whyatt & Michael Powell & Matthew Westman & Feng (Richard) Zheng & Zhigang Zak Fang, 2015. "Metal Hydrides for High-Temperature Power Generation," Energies, MDPI, vol. 8(8), pages 1-25, August.
    5. M. Armand & J.-M. Tarascon, 2008. "Building better batteries," Nature, Nature, vol. 451(7179), pages 652-657, February.
    6. Kenisarin, Murat M., 2010. "High-temperature phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 955-970, April.
    7. Pascal Schouwink & Morten B. Ley & Antoine Tissot & Hans Hagemann & Torben R. Jensen & Ľubomír Smrčok & Radovan Černý, 2014. "Structure and properties of complex hydride perovskite materials," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    8. Corgnale, Claudio & Hardy, Bruce & Motyka, Theodore & Zidan, Ragaiy & Teprovich, Joseph & Peters, Brent, 2014. "Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 821-833.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magda Pęska & Tomasz Czujko & Marek Polański, 2020. "Hydrogenation Ability of Mg-Li Alloys," Energies, MDPI, vol. 13(8), pages 1-11, April.
    2. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Anggito P. Tetuko & Bahman Shabani & John Andrews, 2018. "Passive Fuel Cell Heat Recovery Using Heat Pipes to Enhance Metal Hydride Canisters Hydrogen Discharge Rate: An Experimental Simulation," Energies, MDPI, vol. 11(4), pages 1-19, April.
    4. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    5. Julián Puszkiel & José M. Bellosta von Colbe & Julian Jepsen & Sergey V. Mitrokhin & Elshad Movlaev & Victor Verbetsky & Thomas Klassen, 2020. "Designing an AB 2 -Type Alloy (TiZr-CrMnMo) for the Hybrid Hydrogen Storage Concept," Energies, MDPI, vol. 13(11), pages 1-26, June.
    6. Christoph Frommen & Magnus H. Sørby & Michael Heere & Terry D. Humphries & Jørn E. Olsen & Bjørn C. Hauback, 2017. "Rare Earth Borohydrides—Crystal Structures and Thermal Properties," Energies, MDPI, vol. 10(12), pages 1-24, December.
    7. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    8. Malleswararao, K. & Aswin, N. & Srinivasa Murthy, S. & Dutta, Pradip, 2022. "Studies on long-term and buffer modes of operations of a thermal energy storage system using coupled metal hydrides," Energy, Elsevier, vol. 258(C).
    9. Dragan Pamučar & Ibrahim Badi & Korica Sanja & Radojko Obradović, 2018. "A Novel Approach for the Selection of Power-Generation Technology Using a Linguistic Neutrosophic CODAS Method: A Case Study in Libya," Energies, MDPI, vol. 11(9), pages 1-25, September.
    10. Ritu Kandari & Neeraj Neeraj & Alexander Micallef, 2022. "Review on Recent Strategies for Integrating Energy Storage Systems in Microgrids," Energies, MDPI, vol. 16(1), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    3. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    4. Liu, Yang & Wang, Hongxia & Ayub, Iqra & Yang, Fusheng & Wu, Zhen & Zhang, Zaoxiao, 2021. "A variable cross-section annular fins type metal hydride reactor for improving the phenomenon of inhomogeneous reaction in the thermal energy storage processes," Applied Energy, Elsevier, vol. 295(C).
    5. Serge Nyallang Nyamsi & Ivan Tolj, 2021. "The Impact of Active and Passive Thermal Management on the Energy Storage Efficiency of Metal Hydride Pairs Based Heat Storage," Energies, MDPI, vol. 14(11), pages 1-24, May.
    6. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    7. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    8. Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
    9. Bruce J. Hardy & Claudio Corgnale & Stephanie N. Gamble, 2021. "Operating Characteristics of Metal Hydride-Based Solar Energy Storage Systems," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
    10. Malleswararao, K. & Aswin, N. & Srinivasa Murthy, S. & Dutta, Pradip, 2022. "Studies on long-term and buffer modes of operations of a thermal energy storage system using coupled metal hydrides," Energy, Elsevier, vol. 258(C).
    11. Mao, Qianjun, 2016. "Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 320-327.
    12. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Qi Xia & Shuaiming Feng & Mingmin Kong & Chen Chen, 2021. "Efficiency Enhancement of an Ammonia-Based Solar Thermochemical Energy Storage System Implemented with Hydrogen Permeation Membrane," Sustainability, MDPI, vol. 13(22), pages 1-13, November.
    14. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    15. Jun-Ping Hu & Hang Sheng & Qi Deng & Qiang Ma & Jun Liu & Xiong-Wei Wu & Jun-Jie Liu & Yu-Ping Wu, 2020. "High-Rate Layered Cathode of Lithium-Ion Batteries through Regulating Three-Dimensional Agglomerated Structure," Energies, MDPI, vol. 13(7), pages 1-12, April.
    16. Li, Qun & Yin, Longwei & Ma, Jingyun & Li, Zhaoqiang & Zhang, Zhiwei & Chen, Ailian & Li, Caixia, 2015. "Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries," Energy, Elsevier, vol. 85(C), pages 159-166.
    17. Yiding, Li & Wenwei, Wang & Cheng, Lin & Xiaoguang, Yang & Fenghao, Zuo, 2021. "A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression," Energy, Elsevier, vol. 215(PA).
    18. Raud, Ralf & Cholette, Michael E. & Riahi, Soheila & Bruno, Frank & Saman, Wasim & Will, Geoffrey & Steinberg, Theodore A., 2017. "Design optimization method for tube and fin latent heat thermal energy storage systems," Energy, Elsevier, vol. 134(C), pages 585-594.
    19. Bell, S. & Steinberg, T. & Will, G., 2019. "Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Naveed Hassan & Manickam Minakshi & Willey Yun Hsien Liew & Amun Amri & Zhong-Tao Jiang, 2023. "Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature," Energies, MDPI, vol. 16(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1645-:d:115489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.