IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2080-d348499.html
   My bibliography  Save this article

Hydrogenation Ability of Mg-Li Alloys

Author

Listed:
  • Magda Pęska

    (Institute of Materials Science and Engineering, Faculty of Advanced Technology and Chemistry, Military University of Technology, Kaliskiego 2 Street, 00-908 Warszawa, Poland)

  • Tomasz Czujko

    (Institute of Materials Science and Engineering, Faculty of Advanced Technology and Chemistry, Military University of Technology, Kaliskiego 2 Street, 00-908 Warszawa, Poland)

  • Marek Polański

    (Institute of Materials Science and Engineering, Faculty of Advanced Technology and Chemistry, Military University of Technology, Kaliskiego 2 Street, 00-908 Warszawa, Poland)

Abstract

The Mg-Li binary system is characterized by the presence of α-Mg(Li) and β-Li(Mg) phases, where magnesium exists in ordered and disordered forms that may affect the hydrogenation properties of magnesium. Therefore, the hydrogenation properties of an AZ31 alloy modified by the addition of 4.0 wt.%, 7.5 wt.% and 15.0 wt.% lithium were studied. The morphology (scanning electron microscopy (SEM)), structure, phase composition (X-ray diffraction (XRD)) and hydrogenation properties (differential scanning calorimetry (DSC)) of AZ31 with various lithium contents were investigated. It was found that the susceptibility of magnesium in the form of α-Mg(Li) to hydrogenation was higher than that for the magnesium occupying a disordered position in β-Li(Mg) solid solutions. Magnesium hydride was obtained as a result of hydrogenation of the AZ31 alloy that was modified with 4.0 wt.%, 7.5 wt.% and 15.0 wt.% additions of lithium, and was characterized by high hydrogen desorption activation energies of 250, 187 and 224 kJ/mol, respectively.

Suggested Citation

  • Magda Pęska & Tomasz Czujko & Marek Polański, 2020. "Hydrogenation Ability of Mg-Li Alloys," Energies, MDPI, vol. 13(8), pages 1-11, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2080-:d:348499
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2080/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2080/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hai-Wen Li & Yigang Yan & Shin-ichi Orimo & Andreas Züttel & Craig M. Jensen, 2011. "Recent Progress in Metal Borohydrides for Hydrogen Storage," Energies, MDPI, vol. 4(1), pages 1-30, January.
    2. Kasper T. Møller & Drew Sheppard & Dorthe B. Ravnsbæk & Craig E. Buckley & Etsuo Akiba & Hai-Wen Li & Torben R. Jensen, 2017. "Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage," Energies, MDPI, vol. 10(10), pages 1-30, October.
    3. Momirlan, M. & Veziroglu, T. N., 2002. "Current status of hydrogen energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 141-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuela Ingaldi & Dorota Klimecka-Tatar, 2020. "People’s Attitude to Energy from Hydrogen—From the Point of View of Modern Energy Technologies and Social Responsibility," Energies, MDPI, vol. 13(24), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Frommen & Magnus H. Sørby & Michael Heere & Terry D. Humphries & Jørn E. Olsen & Bjørn C. Hauback, 2017. "Rare Earth Borohydrides—Crystal Structures and Thermal Properties," Energies, MDPI, vol. 10(12), pages 1-24, December.
    2. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    3. Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.
    4. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    5. Keramiotis, Ch. & Vourliotakis, G. & Skevis, G. & Founti, M.A. & Esarte, C. & Sánchez, N.E. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure," Energy, Elsevier, vol. 43(1), pages 103-110.
    6. Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
    7. Julius Akinbomi & Mohammad J. Taherzadeh, 2015. "Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes," Energies, MDPI, vol. 8(5), pages 1-20, May.
    8. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    9. Romain Moury & Umit B. Demirci, 2015. "Hydrazine Borane and Hydrazinidoboranes as Chemical Hydrogen Storage Materials," Energies, MDPI, vol. 8(4), pages 1-24, April.
    10. Dragan Pamučar & Ibrahim Badi & Korica Sanja & Radojko Obradović, 2018. "A Novel Approach for the Selection of Power-Generation Technology Using a Linguistic Neutrosophic CODAS Method: A Case Study in Libya," Energies, MDPI, vol. 11(9), pages 1-25, September.
    11. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    12. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    13. Koroneos, C. & Dompros, A. & Roumbas, G. & Moussiopoulos, N., 2005. "Advantages of the use of hydrogen fuel as compared to kerosene," Resources, Conservation & Recycling, Elsevier, vol. 44(2), pages 99-113.
    14. Liqing He & Hai-Wen Li & Etsuo Akiba, 2015. "Thermal Decomposition of Anhydrous Alkali Metal Dodecaborates M 2 B 12 H 12 (M = Li, Na, K)," Energies, MDPI, vol. 8(11), pages 1-10, November.
    15. Wang, Cui & Zhu, Chao & Huang, Jianbing & Li, Linfeng & Jin, Hui, 2021. "Enhancement of depolymerization slag gasification in supercritical water and its gasification performance in fluidized bed reactor," Renewable Energy, Elsevier, vol. 168(C), pages 829-837.
    16. Jianfeng Mao & Duncan H. Gregory, 2015. "Recent Advances in the Use of Sodium Borohydride as a Solid State Hydrogen Store," Energies, MDPI, vol. 8(1), pages 1-24, January.
    17. Udomsirichakorn, Jakkapong & Salam, P. Abdul, 2014. "Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 565-579.
    18. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    19. Zhang, Zhiqing & Lv, Junshuai & Xie, Guanglin & Wang, Su & Ye, Yanshuai & Huang, Gaohua & Tan, Donlgi, 2022. "Effect of assisted hydrogen on combustion and emission characteristics of a diesel engine fueled with biodiesel," Energy, Elsevier, vol. 254(PA).
    20. Schenk, Niels J. & Moll, Henri C. & Potting, José & Benders, René M.J., 2007. "Wind energy, electricity, and hydrogen in the Netherlands," Energy, Elsevier, vol. 32(10), pages 1960-1971.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2080-:d:348499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.