IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2115-d122585.html
   My bibliography  Save this article

Rare Earth Borohydrides—Crystal Structures and Thermal Properties

Author

Listed:
  • Christoph Frommen

    (Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller, Norway)

  • Magnus H. Sørby

    (Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller, Norway)

  • Michael Heere

    (Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller, Norway
    Research Neutron Source Munich (FRM2) and Karlsruhe Institute of Technology (KIT), Institute for Applied Materials—Energy Storage Systems (IAM-ESS), 76344 Eggenstein, Germany)

  • Terry D. Humphries

    (Department of Physics and Astronomy, Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth 6845, Australia)

  • Jørn E. Olsen

    (Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller, Norway)

  • Bjørn C. Hauback

    (Institute for Energy Technology, Physics Department, P.O. Box 40, NO-2027 Kjeller, Norway)

Abstract

Rare earth ( RE ) borohydrides have received considerable attention during the past ten years as possible hydrogen storage materials due to their relatively high gravimetric hydrogen density. This review illustrates the rich chemistry, structural diversity and thermal properties of borohydrides containing RE elements. In addition, it highlights the decomposition and rehydrogenation properties of composites containing RE -borohydrides, light-weight metal borohydrides such as LiBH 4 and additives such as LiH.

Suggested Citation

  • Christoph Frommen & Magnus H. Sørby & Michael Heere & Terry D. Humphries & Jørn E. Olsen & Bjørn C. Hauback, 2017. "Rare Earth Borohydrides—Crystal Structures and Thermal Properties," Energies, MDPI, vol. 10(12), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2115-:d:122585
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2115/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2115/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hai-Wen Li & Yigang Yan & Shin-ichi Orimo & Andreas Züttel & Craig M. Jensen, 2011. "Recent Progress in Metal Borohydrides for Hydrogen Storage," Energies, MDPI, vol. 4(1), pages 1-30, January.
    2. Kasper T. Møller & Drew Sheppard & Dorthe B. Ravnsbæk & Craig E. Buckley & Etsuo Akiba & Hai-Wen Li & Torben R. Jensen, 2017. "Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage," Energies, MDPI, vol. 10(10), pages 1-30, October.
    3. Pascal Schouwink & Morten B. Ley & Antoine Tissot & Hans Hagemann & Torben R. Jensen & Ľubomír Smrčok & Radovan Černý, 2014. "Structure and properties of complex hydride perovskite materials," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magda Pęska & Tomasz Czujko & Marek Polański, 2020. "Hydrogenation Ability of Mg-Li Alloys," Energies, MDPI, vol. 13(8), pages 1-11, April.
    2. Olena Zavorotynska & Stefano Deledda & Jenny G. Vitillo & Ivan Saldan & Matylda N. Guzik & Marcello Baricco & John C. Walmsley & Jiri Muller & Bjørn C. Hauback, 2015. "Combined X-ray and Raman Studies on the Effect of Cobalt Additives on the Decomposition of Magnesium Borohydride," Energies, MDPI, vol. 8(9), pages 1-18, August.
    3. Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
    4. Romain Moury & Umit B. Demirci, 2015. "Hydrazine Borane and Hydrazinidoboranes as Chemical Hydrogen Storage Materials," Energies, MDPI, vol. 8(4), pages 1-24, April.
    5. Dragan Pamučar & Ibrahim Badi & Korica Sanja & Radojko Obradović, 2018. "A Novel Approach for the Selection of Power-Generation Technology Using a Linguistic Neutrosophic CODAS Method: A Case Study in Libya," Energies, MDPI, vol. 11(9), pages 1-25, September.
    6. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    7. Liqing He & Hai-Wen Li & Etsuo Akiba, 2015. "Thermal Decomposition of Anhydrous Alkali Metal Dodecaborates M 2 B 12 H 12 (M = Li, Na, K)," Energies, MDPI, vol. 8(11), pages 1-10, November.
    8. Jianfeng Mao & Duncan H. Gregory, 2015. "Recent Advances in the Use of Sodium Borohydride as a Solid State Hydrogen Store," Energies, MDPI, vol. 8(1), pages 1-24, January.
    9. Cihan Kurkcu & Selgin Al & Cagatay Yamcicier, 2022. "Investigation of mechanical properties of KCaH3 and KSrH3 orthorhombic perovskite hydrides under high pressure for hydrogen storage applications," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(11), pages 1-11, November.
    10. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    11. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Oriele Palumbo & Francesco Trequattrini & Suchismita Sarker & Madhura Hulyakar & Narendra Pal & Dhanesh Chandra & Michael Dolan & Annalisa Paolone, 2017. "New Studies of the Physical Properties of Metallic Amorphous Membranes for Hydrogen Purification," Challenges, MDPI, vol. 8(1), pages 1-12, February.
    13. Hong Fang & Puru Jena, 2022. "Argyrodite-type advanced lithium conductors and transport mechanisms beyond paddle-wheel effect," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Liu, Yongfeng & Zhang, Wenxuan & Zhang, Xin & Yang, Limei & Huang, Zhenguo & Fang, Fang & Sun, Wenping & Gao, Mingxia & Pan, Hongge, 2023. "Nanostructured light metal hydride: Fabrication strategies and hydrogen storage performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    15. Anggito P. Tetuko & Bahman Shabani & John Andrews, 2018. "Passive Fuel Cell Heat Recovery Using Heat Pipes to Enhance Metal Hydride Canisters Hydrogen Discharge Rate: An Experimental Simulation," Energies, MDPI, vol. 11(4), pages 1-19, April.
    16. Pascal Schouwink & Fabrice Morelle & Yolanda Sadikin & Yaroslav Filinchuk & Radovan Černý, 2015. "Increasing Hydrogen Density with the Cation-Anion Pair BH 4 − -NH 4 + in Perovskite-Type NH 4 Ca(BH 4 ) 3," Energies, MDPI, vol. 8(8), pages 1-14, August.
    17. Malleswararao, K. & Aswin, N. & Srinivasa Murthy, S. & Dutta, Pradip, 2022. "Studies on long-term and buffer modes of operations of a thermal energy storage system using coupled metal hydrides," Energy, Elsevier, vol. 258(C).
    18. Calabrese, M. & Russo, D. & di Benedetto, A. & Marotta, R. & Andreozzi, R., 2023. "Formate/bicarbonate interconversion for safe hydrogen storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    19. Kasper T. Møller & Drew Sheppard & Dorthe B. Ravnsbæk & Craig E. Buckley & Etsuo Akiba & Hai-Wen Li & Torben R. Jensen, 2017. "Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage," Energies, MDPI, vol. 10(10), pages 1-30, October.
    20. Ritu Kandari & Neeraj Neeraj & Alexander Micallef, 2022. "Review on Recent Strategies for Integrating Energy Storage Systems in Microgrids," Energies, MDPI, vol. 16(1), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2115-:d:122585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.