IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6706.html
   My bibliography  Save this article

Structure and properties of complex hydride perovskite materials

Author

Listed:
  • Pascal Schouwink

    (Laboratory of Crystallography, University of Geneva)

  • Morten B. Ley

    (Interdisciplinary Nanoscience Center (iNANO), University of Aarhus)

  • Antoine Tissot

    (University of Geneva)

  • Hans Hagemann

    (University of Geneva)

  • Torben R. Jensen

    (Interdisciplinary Nanoscience Center (iNANO), University of Aarhus)

  • Ľubomír Smrčok

    (Institute of Inorganic Chemistry, Slovak Academy of Sciences)

  • Radovan Černý

    (Laboratory of Crystallography, University of Geneva)

Abstract

Perovskite materials host an incredible variety of functionalities. Although the lightest element, hydrogen, is rarely encountered in oxide perovskite lattices, it was recently observed as the hydride anion H−, substituting for the oxide anion in BaTiO3. Here we present a series of 30 new complex hydride perovskite-type materials, based on the non-spherical tetrahydroborate anion BH4− and new synthesis protocols involving rare-earth elements. Photophysical, electronic and hydrogen storage properties are discussed, along with counterintuitive trends in structural behaviour. The electronic structure is investigated theoretically with density functional theory solid-state calculations. BH4-specific anion dynamics are introduced to perovskites, mediating mechanisms that freeze lattice instabilities and generate supercells of up to 16 × the unit cell volume in AB(BH4)3. In this view, homopolar hydridic di-hydrogen contacts arise as a potential tool with which to tailor crystal symmetries, thus merging concepts of molecular chemistry with ceramic-like host lattices. Furthermore, anion mixing BH4−←X− (X−=Cl−, Br−, I−) provides a link to the known ABX3 halides.

Suggested Citation

  • Pascal Schouwink & Morten B. Ley & Antoine Tissot & Hans Hagemann & Torben R. Jensen & Ľubomír Smrčok & Radovan Černý, 2014. "Structure and properties of complex hydride perovskite materials," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6706
    DOI: 10.1038/ncomms6706
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6706
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pascal Schouwink & Fabrice Morelle & Yolanda Sadikin & Yaroslav Filinchuk & Radovan Černý, 2015. "Increasing Hydrogen Density with the Cation-Anion Pair BH 4 − -NH 4 + in Perovskite-Type NH 4 Ca(BH 4 ) 3," Energies, MDPI, vol. 8(8), pages 1-14, August.
    2. Christoph Frommen & Magnus H. Sørby & Michael Heere & Terry D. Humphries & Jørn E. Olsen & Bjørn C. Hauback, 2017. "Rare Earth Borohydrides—Crystal Structures and Thermal Properties," Energies, MDPI, vol. 10(12), pages 1-24, December.
    3. Cihan Kurkcu & Selgin Al & Cagatay Yamcicier, 2022. "Investigation of mechanical properties of KCaH3 and KSrH3 orthorhombic perovskite hydrides under high pressure for hydrogen storage applications," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(11), pages 1-11, November.
    4. Morten B. Ley & Elsa Roedern & Peter M. M. Thygesen & Torben R. Jensen, 2015. "Melting Behavior and Thermolysis of NaBH 4 −Mg(BH 4 ) 2 and NaBH 4 −Ca(BH 4 ) 2 Composites," Energies, MDPI, vol. 8(4), pages 1-13, April.
    5. Hong Fang & Puru Jena, 2022. "Argyrodite-type advanced lithium conductors and transport mechanisms beyond paddle-wheel effect," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Kasper T. Møller & Drew Sheppard & Dorthe B. Ravnsbæk & Craig E. Buckley & Etsuo Akiba & Hai-Wen Li & Torben R. Jensen, 2017. "Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage," Energies, MDPI, vol. 10(10), pages 1-30, October.
    7. Olena Zavorotynska & Stefano Deledda & Jenny G. Vitillo & Ivan Saldan & Matylda N. Guzik & Marcello Baricco & John C. Walmsley & Jiri Muller & Bjørn C. Hauback, 2015. "Combined X-ray and Raman Studies on the Effect of Cobalt Additives on the Decomposition of Magnesium Borohydride," Energies, MDPI, vol. 8(9), pages 1-18, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.