IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p1949-d160331.html
   My bibliography  Save this article

Voltage Support Experimental Analysis of a Low-Voltage Ride-Through Strategy Applied to Grid-Connected Distributed Inverters

Author

Listed:
  • Miguel Garnica

    (Department of Electronic Engineering, Technical University of Catalonia, 08800 Vilanova i la Geltrú, Spain)

  • Luís García de Vicuña

    (Department of Electronic Engineering, Technical University of Catalonia, 08800 Vilanova i la Geltrú, Spain)

  • Jaume Miret

    (Department of Electronic Engineering, Technical University of Catalonia, 08800 Vilanova i la Geltrú, Spain)

  • Antonio Camacho

    (Department of Electronic Engineering, Technical University of Catalonia, 08800 Vilanova i la Geltrú, Spain)

  • Ramón Guzmán

    (Department of Automatic Control, Technical University of Catalonia, 08800 Vilanova i la Geltrú, Spain)

Abstract

In recent decades, different control strategies have been designed for the increasing integration of distributed generation systems. These systems, most of them based on renewable energies, use electronic converters to exchange power with the grid. Capabilities such as low-voltage ride-through and reactive current injection have been experimentally explored and reported in many research papers with a single inverter; however, these capabilities have not been examined in depth in a scenario with multiple inverters connected to the grid. Only few simulation works that include certain methods of reactive power control to solve overvoltage issues in low voltage grids can be found in the literature. Therefore, the overall objective of the work presented in this paper is to provide an experimental analysis of a low-voltage ride-through strategy applied to distributed power generation systems to help support the grid during voltage sags. The amount of reactive power will depend on the capability of each inverter and the amount of generated active power. The obtained experimental results demonstrate that, depending on the configuration of distributed generation, diverse inverters could have different control strategies. In the same way, the discussion of these results shows that the present object of study is of great interest for future research.

Suggested Citation

  • Miguel Garnica & Luís García de Vicuña & Jaume Miret & Antonio Camacho & Ramón Guzmán, 2018. "Voltage Support Experimental Analysis of a Low-Voltage Ride-Through Strategy Applied to Grid-Connected Distributed Inverters," Energies, MDPI, vol. 11(8), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1949-:d:160331
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/1949/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/1949/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio Camacho & Miguel Castilla & Franco Canziani & Carlos Moreira & Paulo Coelho & Mario Gomes & Pedro E. Mercado, 2017. "Performance Comparison of Grid-Faulty Control Schemes for Inverter-Based Industrial Microgrids," Energies, MDPI, vol. 10(12), pages 1-25, December.
    2. Jaume Miret & José Luís García de Vicuña & Ramón Guzmán & Antonio Camacho & Mohammad Moradi Ghahderijani, 2017. "A Flexible Experimental Laboratory for Distributed Generation Networks Based on Power Inverters," Energies, MDPI, vol. 10(10), pages 1-27, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandros G. Paspatis & George C. Konstantopoulos, 2019. "Voltage Support under Grid Faults with Inherent Current Limitation for Three-Phase Droop-Controlled Inverters," Energies, MDPI, vol. 12(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Nasser Doyle de Doile & Pedro Paulo Balestrassi & Miguel Castilla & Antonio Carlos Zambroni de Souza & Jaume Miret, 2023. "An Experimental Approach for Secondary Consensus Control Tuning for Inverter-Based Islanded Microgrids," Energies, MDPI, vol. 16(1), pages 1-15, January.
    2. Wilson Pavon & Esteban Inga & Silvio Simani & Maddalena Nonato, 2021. "A Review on Optimal Control for the Smart Grid Electrical Substation Enhancing Transition Stability," Energies, MDPI, vol. 14(24), pages 1-15, December.
    3. Antonio Camacho & Miguel Castilla & Franco Canziani & Carlos Moreira & Paulo Coelho & Mario Gomes & Pedro E. Mercado, 2017. "Performance Comparison of Grid-Faulty Control Schemes for Inverter-Based Industrial Microgrids," Energies, MDPI, vol. 10(12), pages 1-25, December.
    4. Yalin Liang & Yuyao He & Yun Niu, 2022. "Robust Errorless-Control-Targeted Technique Based on MPC for Microgrid with Uncertain Electric Vehicle Energy Storage Systems," Energies, MDPI, vol. 15(4), pages 1-23, February.
    5. Hong Zhu & Xing Zhang & Ming Li & Xiaoxi Liu, 2019. "Research on Multifunctional High-Power Grid Source Simulator System with Synchronous Generator, Line Impedance Imitation, and ZIP Load Emulator," Energies, MDPI, vol. 12(24), pages 1-19, December.
    6. Yalin Liang & Yuyao He & Yun Niu, 2020. "Microgrid Frequency Fluctuation Attenuation Using Improved Fuzzy Adaptive Damping-Based VSG Considering Dynamics and Allowable Deviation," Energies, MDPI, vol. 13(18), pages 1-23, September.
    7. Alexandros G. Paspatis & George C. Konstantopoulos, 2019. "Voltage Support under Grid Faults with Inherent Current Limitation for Three-Phase Droop-Controlled Inverters," Energies, MDPI, vol. 12(6), pages 1-20, March.
    8. Bilal Naji Alhasnawi & Basil H. Jasim & Walid Issa & Amjad Anvari-Moghaddam & Frede Blaabjerg, 2020. "A New Robust Control Strategy for Parallel Operated Inverters in Green Energy Applications," Energies, MDPI, vol. 13(13), pages 1-31, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1949-:d:160331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.