IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v183y2016icp445-455.html
   My bibliography  Save this article

A novel approach using flexible scheduling and aggregation to optimize demand response in the developing interactive grid market architecture

Author

Listed:
  • Reihani, Ehsan
  • Motalleb, Mahdi
  • Thornton, Matsu
  • Ghorbani, Reza

Abstract

With the increasing presence of intermittent renewable energy generation sources, variable control over loads and energy storage devices on the grid become even more important to maintain this balance. Increasing renewable energy penetration depends on both technical and economic factors. Distribution system consumers can contribute to grid stability by controlling residential electrical device power consumed by water heaters and battery storage systems. Coupled with dynamic supply pricing strategies, a comprehensive system for demand response (DR) exist. Proper DR management will allow greater integration of renewable energy sources partially replacing energy demand currently met by the combustion of fossil-fuels. An enticing economic framework providing increased value to consumers compensates them for reduced control of devices placed under a DR aggregator. Much work has already been done to develop more effective ways to implement DR control systems. Utilizing an integrated approach that combines consumer requirements into aggregate pools, and provides a dynamic response to market and grid conditions, we have developed a mathematical model that can quantify control parameters for optimum demand response and decide which resources to switch and when. In this model, optimization is achieved as a function of cost savings vs. customer comfort using mathematical market analysis. Two market modeling approaches—the Cournot and SFE—are presented and compared. A quadratic function is used for presenting the cost function of each DRA (Demand Response Aggregator) which will be used for settling down the DR market. Contribution of each aggregator and the final price are presented. Finally, we have also performed sensitivity analysis on the house cost function’s coefficients for one of the aggregators.

Suggested Citation

  • Reihani, Ehsan & Motalleb, Mahdi & Thornton, Matsu & Ghorbani, Reza, 2016. "A novel approach using flexible scheduling and aggregation to optimize demand response in the developing interactive grid market architecture," Applied Energy, Elsevier, vol. 183(C), pages 445-455.
  • Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:445-455
    DOI: 10.1016/j.apenergy.2016.08.170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191631279X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Behrangrad, Mahdi & Sugihara, Hideharu & Funaki, Tsuyoshi, 2011. "Effect of optimal spinning reserve requirement on system pollution emission considering reserve supplying demand response in the electricity market," Applied Energy, Elsevier, vol. 88(7), pages 2548-2558, July.
    2. Ju, Liwei & Tan, Zhongfu & Yuan, Jinyun & Tan, Qingkun & Li, Huanhuan & Dong, Fugui, 2016. "A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response," Applied Energy, Elsevier, vol. 171(C), pages 184-199.
    3. Zamani, Ali Ghahgharaee & Zakariazadeh, Alireza & Jadid, Shahram, 2016. "Day-ahead resource scheduling of a renewable energy based virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 324-340.
    4. Rious, Vincent & Perez, Yannick & Roques, Fabien, 2015. "Which electricity market design to encourage the development of demand response?," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 128-138.
    5. Holmberg, Pär & Newbery, David, 2010. "The supply function equilibrium and its policy implications for wholesale electricity auctions," Utilities Policy, Elsevier, vol. 18(4), pages 209-226, December.
    6. Ghatikar, Girish & Mashayekh, Salman & Stadler, Michael & Yin, Rongxin & Liu, Zhenhua, 2016. "Distributed energy systems integration and demand optimization for autonomous operations and electric grid transactions," Applied Energy, Elsevier, vol. 167(C), pages 432-448.
    7. Siano, Pierluigi & Sarno, Debora, 2016. "Assessing the benefits of residential demand response in a real time distribution energy market," Applied Energy, Elsevier, vol. 161(C), pages 533-551.
    8. Holmberg, Pär, 2009. "Numerical calculation of an asymmetric supply function equilibrium with capacity constraints," European Journal of Operational Research, Elsevier, vol. 199(1), pages 285-295, November.
    9. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Zare, Kazem, 2014. "Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs," Applied Energy, Elsevier, vol. 136(C), pages 393-404.
    10. Shen, Bo & Ghatikar, Girish & Lei, Zeng & Li, Jinkai & Wikler, Greg & Martin, Phil, 2014. "The role of regulatory reforms, market changes, and technology development to make demand response a viable resource in meeting energy challenges," Applied Energy, Elsevier, vol. 130(C), pages 814-823.
    11. Kwag, Hyung-Geun & Kim, Jin-O, 2012. "Optimal combined scheduling of generation and demand response with demand resource constraints," Applied Energy, Elsevier, vol. 96(C), pages 161-170.
    12. Shafie-khah, M. & Heydarian-Forushani, E. & Golshan, M.E.H. & Siano, P. & Moghaddam, M.P. & Sheikh-El-Eslami, M.K. & Catalão, J.P.S., 2016. "Optimal trading of plug-in electric vehicle aggregation agents in a market environment for sustainability," Applied Energy, Elsevier, vol. 162(C), pages 601-612.
    13. Alcázar-Ortega, Manuel & Calpe, Carmen & Theisen, Thomas & Carbonell-Carretero, José Francisco, 2015. "Methodology for the identification, evaluation and prioritization of market handicaps which prevent the implementation of Demand Response: Application to European electricity markets," Energy Policy, Elsevier, vol. 86(C), pages 529-543.
    14. Doostizadeh, Meysam & Ghasemi, Hassan, 2012. "A day-ahead electricity pricing model based on smart metering and demand-side management," Energy, Elsevier, vol. 46(1), pages 221-230.
    15. Zou, Peng & Chen, Qixin & Xia, Qing & He, Chang & Kang, Chongqing, 2015. "Incentive compatible pool-based electricity market design and implementation: A Bayesian mechanism design approach," Applied Energy, Elsevier, vol. 158(C), pages 508-518.
    16. Genc, Talat S., 2016. "Measuring demand responses to wholesale electricity prices using market power indices," Energy Economics, Elsevier, vol. 56(C), pages 247-260.
    17. Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2015. "Performance evaluation of power demand scheduling scenarios in a smart grid environment," Applied Energy, Elsevier, vol. 142(C), pages 164-178.
    18. Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
    19. Tanaka, Makoto & Chen, Yihsu, 2012. "Market power in emissions trading: Strategically manipulating permit price through fringe firms," Applied Energy, Elsevier, vol. 96(C), pages 203-211.
    20. Ross Baldick & Ryan Grant & Edward Kahn, 2004. "Theory and Application of Linear Supply Function Equilibrium in Electricity Markets," Journal of Regulatory Economics, Springer, vol. 25(2), pages 143-167, March.
    21. Anees, Amir & Chen, Yi-Ping Phoebe, 2016. "True real time pricing and combined power scheduling of electric appliances in residential energy management system," Applied Energy, Elsevier, vol. 165(C), pages 592-600.
    22. Falsafi, Hananeh & Zakariazadeh, Alireza & Jadid, Shahram, 2014. "The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming," Energy, Elsevier, vol. 64(C), pages 853-867.
    23. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Demand response in smart electricity grids equipped with renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 64-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
    3. Rabiee, Abdorreza & Sadeghi, Mohammad & Aghaeic, Jamshid & Heidari, Alireza, 2016. "Optimal operation of microgrids through simultaneous scheduling of electrical vehicles and responsive loads considering wind and PV units uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 721-739.
    4. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    5. Sousa, Joana & Soares, Isabel, 2023. "Benefits and barriers concerning demand response stakeholder value chain: A systematic literature review," Energy, Elsevier, vol. 280(C).
    6. Yang, Changhui & Meng, Chen & Zhou, Kaile, 2018. "Residential electricity pricing in China: The context of price-based demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2870-2878.
    7. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    8. Jin, Ming & Feng, Wei & Marnay, Chris & Spanos, Costas, 2018. "Microgrid to enable optimal distributed energy retail and end-user demand response," Applied Energy, Elsevier, vol. 210(C), pages 1321-1335.
    9. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    10. Li, Xin & Chen, Hsing Hung & Tao, Xiangnan, 2016. "Pricing and capacity allocation in renewable energy," Applied Energy, Elsevier, vol. 179(C), pages 1097-1105.
    11. Leinauer, Christina & Schott, Paul & Fridgen, Gilbert & Keller, Robert & Ollig, Philipp & Weibelzahl, Martin, 2022. "Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation," Energy Policy, Elsevier, vol. 165(C).
    12. Abdul Conteh & Mohammed Elsayed Lotfy & Oludamilare Bode Adewuyi & Paras Mandal & Hiroshi Takahashi & Tomonobu Senjyu, 2020. "Demand Response Economic Assessment with the Integration of Renewable Energy for Developing Electricity Markets," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    13. Sharifi, R. & Fathi, S.H. & Vahidinasab, V., 2017. "A review on Demand-side tools in electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 565-572.
    14. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    15. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    16. Holmberg, Pär & Newbery, David & Ralph, Daniel, 2013. "Supply function equilibria: Step functions and continuous representations," Journal of Economic Theory, Elsevier, vol. 148(4), pages 1509-1551.
    17. Sadeghianpourhamami, N. & Demeester, T. & Benoit, D.F. & Strobbe, M. & Develder, C., 2016. "Modeling and analysis of residential flexibility: Timing of white good usage," Applied Energy, Elsevier, vol. 179(C), pages 790-805.
    18. Genc, Talat S., 2024. "Energy Transition and the role of new natural gas turbines for power production: The case of GT11N2 M generators," Energy Economics, Elsevier, vol. 131(C).
    19. Salkuti, Surender Reddy, 2019. "Day-ahead thermal and renewable power generation scheduling considering uncertainty," Renewable Energy, Elsevier, vol. 131(C), pages 956-965.
    20. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:183:y:2016:i:c:p:445-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.