Hidden power system inflexibilities imposed by traditional unit commitment formulations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.01.089
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Oree, Vishwamitra & Sayed Hassen, Sayed Z., 2016. "A composite metric for assessing flexibility available in conventional generators of power systems," Applied Energy, Elsevier, vol. 177(C), pages 683-691.
- Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2015. "A simplified optimization model to short-term electricity planning," Energy, Elsevier, vol. 93(P2), pages 2126-2135.
- Reza Norouzi, Mohammad & Ahmadi, Abdollah & Esmaeel Nezhad, Ali & Ghaedi, Amir, 2014. "Mixed integer programming of multi-objective security-constrained hydro/thermal unit commitment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 911-923.
- Cui, Hantao & Li, Fangxing & Hu, Qinran & Bai, Linquan & Fang, Xin, 2016. "Day-ahead coordinated operation of utility-scale electricity and natural gas networks considering demand response based virtual power plants," Applied Energy, Elsevier, vol. 176(C), pages 183-195.
- Feng, Yonghan & Ryan, Sarah M., 2016. "Day-ahead hourly electricity load modeling by functional regression," Applied Energy, Elsevier, vol. 170(C), pages 455-465.
- Kubik, M.L. & Coker, P.J. & Barlow, J.F., 2015. "Increasing thermal plant flexibility in a high renewables power system," Applied Energy, Elsevier, vol. 154(C), pages 102-111.
- Wang, Jiadong & Wang, Jianhui & Liu, Cong & Ruiz, Juan P., 2013. "Stochastic unit commitment with sub-hourly dispatch constraints," Applied Energy, Elsevier, vol. 105(C), pages 418-422.
- German Morales-España & Javier García-González & Andrés Ramos, 2012. "Impact on Reserves and Energy Delivery of Current UC-based Market-Clearing Formulations," RSCAS Working Papers 2012/57, European University Institute.
- Yang, Yuanchao & Wang, Jianhui & Guan, Xiaohong & Zhai, Qiaozhu, 2012. "Subhourly unit commitment with feasible energy delivery constraints," Applied Energy, Elsevier, vol. 96(C), pages 245-252.
- Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Menghan & Yang, Zhifang & Lin, Wei & Yu, Juan & Dai, Wei & Du, Ershun, 2021. "Enhancing economics of power systems through fast unit commitment with high time resolution," Applied Energy, Elsevier, vol. 281(C).
- Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Virag, Ana & Gibescu, Madeleine, 2022. "Short term wholesale electricity market designs: A review of identified challenges and promising solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2022.
"The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Bucksteeg, Michael & Wiedmann, Michael & Pöstges, Arne & Haller, Markus & Böttger, Diana & Ruhnau, Oliver & Schmitz, Richard, 2021. "The transformation of integrated electricity and heat systems—Assessing mid-term policies using a model comparison approach," EconStor Preprints 242981, ZBW - Leibniz Information Centre for Economics.
- Lina Silva-Rodriguez & Anibal Sanjab & Elena Fumagalli & Ana Virag & Madeleine Gibescu, 2020. "Short Term Electricity Market Designs: Identified Challenges and Promising Solutions," Papers 2011.04587, arXiv.org.
- Morales-España, Germán & Nycander, Elis & Sijm, Jos, 2021. "Reducing CO2 emissions by curtailing renewables: Examples from optimal power system operation," Energy Economics, Elsevier, vol. 99(C).
- Nycander, Elis & Morales-España, Germán & Söder, Lennart, 2022. "Power-based modelling of renewable variability in dispatch models with clustered time periods," Renewable Energy, Elsevier, vol. 186(C), pages 944-956.
- Feng, Chenjia & Shao, Chengcheng & Wang, Xifan, 2021. "CSP clustering in unit commitment for power system production cost modeling," Renewable Energy, Elsevier, vol. 168(C), pages 1217-1228.
- Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
- Dinesh, Chinthaka & Welikala, Shirantha & Liyanage, Yasitha & Ekanayake, Mervyn Parakrama B. & Godaliyadda, Roshan Indika & Ekanayake, Janaka, 2017. "Non-intrusive load monitoring under residential solar power influx," Applied Energy, Elsevier, vol. 205(C), pages 1068-1080.
- Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
- Gang Wang & Daihai You & Suhua Lou & Zhe Zhang & Li Dai, 2017. "Economic Valuation of Low-Load Operation with Auxiliary Firing of Coal-Fired Units," Energies, MDPI, vol. 10(9), pages 1-20, September.
- Villalobos, Cristian & Negrete-Pincetic, Matías & Figueroa, Nicolás & Lorca, Álvaro & Olivares, Daniel, 2021. "The impact of short-term pricing on flexible generation investments in electricity markets," Energy Economics, Elsevier, vol. 98(C).
- K. Selvakumar & K. Vijayakumar & C. S. Boopathi, 2017. "Demand Response Unit Commitment Problem Solution for Maximizing Generating Companies’ Profit," Energies, MDPI, vol. 10(10), pages 1-18, September.
- G. Cobos, Noemi & Arroyo, José M. & Alguacil, Natalia & Street, Alexandre, 2018. "Network-constrained unit commitment under significant wind penetration: A multistage robust approach with non-fixed recourse," Applied Energy, Elsevier, vol. 232(C), pages 489-503.
- Pavičević, Matija & Kavvadias, Konstantinos & Pukšec, Tomislav & Quoilin, Sylvain, 2019. "Comparison of different model formulations for modelling future power systems with high shares of renewables – The Dispa-SET Balkans model," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Philipsen, Rens & Morales-España, Germán & de Weerdt, Mathijs & de Vries, Laurens, 2019. "Trading power instead of energy in day-ahead electricity markets," Applied Energy, Elsevier, vol. 233, pages 802-815.
- Isuru, Mohasha & Hotz, Matthias & Gooi, H.B. & Utschick, Wolfgang, 2020. "Network-constrained thermal unit commitment fortexhybrid AC/DC transmission grids under wind power uncertainty," Applied Energy, Elsevier, vol. 258(C).
- Verástegui, Felipe & Lorca, Álvaro & Olivares, Daniel & Negrete-Pincetic, Matias, 2021. "Optimization-based analysis of decarbonization pathways and flexibility requirements in highly renewable power systems," Energy, Elsevier, vol. 234(C).
- Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2016. "Low carbon technologies as providers of operational flexibility in future power systems," Applied Energy, Elsevier, vol. 168(C), pages 724-738.
- Nikoobakht, Ahmad & Aghaei, Jamshid & Mardaneh, Mohammad, 2017. "Securing highly penetrated wind energy systems using linearized transmission switching mechanism," Applied Energy, Elsevier, vol. 190(C), pages 1207-1220.
- Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
- Heydarian-Forushani, E. & Golshan, M.E.H. & Siano, Pierluigi, 2017. "Evaluating the benefits of coordinated emerging flexible resources in electricity markets," Applied Energy, Elsevier, vol. 199(C), pages 142-154.
- Chang-Gi Min & Mun-Kyeom Kim, 2017. "Net Load Carrying Capability of Generating Units in Power Systems," Energies, MDPI, vol. 10(8), pages 1-13, August.
- Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.
- Geng, Zhaowei & Conejo, Antonio J. & Chen, Qixin & Xia, Qing & Kang, Chongqing, 2017. "Electricity production scheduling under uncertainty: Max social welfare vs. min emission vs. max renewable production," Applied Energy, Elsevier, vol. 193(C), pages 540-549.
- Tong Guo & Yajing Gao & Xiaojie Zhou & Yonggang Li & Jiaomin Liu, 2018. "Optimal Scheduling of Power System Incorporating the Flexibility of Thermal Units," Energies, MDPI, vol. 11(9), pages 1-17, August.
- Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Assessing wind uncertainty impact on short term operation scheduling of coordinated energy storage systems and thermal units," Renewable Energy, Elsevier, vol. 95(C), pages 74-84.
- Cagnano, A. & De Tuglie, E. & Mancarella, P., 2020. "Microgrids: Overview and guidelines for practical implementations and operation," Applied Energy, Elsevier, vol. 258(C).
- Saleh Abujarad & Mohd Wazir Mustafa & Jasrul Jamani Jamian & Abdirahman M. Abdilahi & Jeroen D. M. De Kooning & Jan Desmet & Lieven Vandevelde, 2020. "An Adjusted Weight Metric to Quantify Flexibility Available in Conventional Generators for Low Carbon Power Systems," Energies, MDPI, vol. 13(21), pages 1-19, October.
- Michalina Kurkus-Gruszecka & Piotr Krawczyk & Janusz Lewandowski, 2021. "Numerical Analysis on the Flue Gas Temperature Maintenance System of a Solid Fuel-Fired Boiler Operating at Minimum Loads," Energies, MDPI, vol. 14(15), pages 1-14, July.
- Xie, Kaigui & Dong, Jizhe & Singh, Chanan & Hu, Bo, 2016. "Optimal capacity and type planning of generating units in a bundled wind–thermal generation system," Applied Energy, Elsevier, vol. 164(C), pages 200-210.
- Philipsen, Rens & Morales-España, Germán & de Weerdt, Mathijs & de Vries, Laurens, 2019. "Trading power instead of energy in day-ahead electricity markets," Applied Energy, Elsevier, vol. 233, pages 802-815.
- Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
- Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2015. "Value of flexible electric vehicles in providing spinning reserve services," Applied Energy, Elsevier, vol. 157(C), pages 60-74.
- Neshumayev, Dmitri & Rummel, Leo & Konist, Alar & Ots, Arvo & Parve, Teet, 2018. "Power plant fuel consumption rate during load cycling," Applied Energy, Elsevier, vol. 224(C), pages 124-135.
- Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Liu, Yu & Wu, Chuanshen & Wang, Sicheng, 2021. "Congestion-aware robust security constrained unit commitment model for AC-DC grids," Applied Energy, Elsevier, vol. 304(C).
- Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Li, Xin & Chong, Daotong & Yan, Junjie, 2018. "Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes," Applied Energy, Elsevier, vol. 228(C), pages 2375-2386.
- Razeghi, Ghazal & Brouwer, Jack & Samuelsen, Scott, 2016. "A spatially and temporally resolved model of the electricity grid – Economic vs environmental dispatch," Applied Energy, Elsevier, vol. 178(C), pages 540-556.
More about this item
Keywords
Energy-based unit commitment; Power-based unit commitment; Reserves; Stochastic programming; Unit commitment; Wind power;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:191:y:2017:i:c:p:223-238. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.