IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v7y2022i9p133-d914886.html
   My bibliography  Save this article

Prediction of Retention Indices and Response Factors of Oxygenates for GC-FID by Multilinear Regression

Author

Listed:
  • Nils Kretzschmar

    (Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany)

  • Markus Seifert

    (Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany)

  • Oliver Busse

    (Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany)

  • Jan J. Weigand

    (Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany)

Abstract

The replacement of fossil carbon sources with green bio-oils promotes the importance of several hundred oxygenated hydrocarbons, which substantially increases the analytical effort in catalysis research. A multilinear regression is performed to correlate retention indices (RIs) and response factors (RFs) with structural properties. The model includes a variety of possible products formed during the hydrodeoxygenation of bio-oils with good accuracy (R RF 2 0.921 and R RI 2 0.975). The GC parameters are related to the detailed hydrocarbon analysis (DHA) method, which is commonly used for non-oxygenated hydrocarbons. The RIs are determined from a paraffin standard (C5–C15), and the RFs are calculated with ethanol and 1,3,5-trimethylbenzene as internal standards. The method presented here can, therefore, be used together with the DHA method and be expanded further. In addition to the multilinear regression, an increment system has been developed for aromatic oxygenates, which further improves the prediction accuracy of the response factors with respect to the molecular constitution (R 2 0.958). Both predictive models are designed exclusively on structural factors to ensure effortless application. All experimental RIs and RFs are determined under identical conditions. Moreover, a folded Plackett–Burman screening design demonstrates the general applicability of the datasets independent of method- or device-specific parameters.

Suggested Citation

  • Nils Kretzschmar & Markus Seifert & Oliver Busse & Jan J. Weigand, 2022. "Prediction of Retention Indices and Response Factors of Oxygenates for GC-FID by Multilinear Regression," Data, MDPI, vol. 7(9), pages 1-12, September.
  • Handle: RePEc:gam:jdataj:v:7:y:2022:i:9:p:133-:d:914886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/7/9/133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/7/9/133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Shuang & Zhou, Guilin & Miao, Caixia, 2019. "Green and renewable bio-diesel produce from oil hydrodeoxygenation: Strategies for catalyst development and mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 568-589.
    2. Ambursa, Murtala M. & Juan, Joon Ching & Yahaya, Y. & Taufiq-Yap, Y.H. & Lin, Yu-Chuan & Lee, Hwei Voon, 2021. "A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leszek Chybowski, 2022. "The Initial Boiling Point of Lubricating Oil as an Indicator for the Assessment of the Possible Contamination of Lubricating Oil with Diesel Oil," Energies, MDPI, vol. 15(21), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zamani, Ali Salehi & Saidi, Majid & Najafabadi, Ali Taheri, 2023. "Selective production of diesel-like alkanes via Neem seed oil hydrodeoxygenation over Ni/MgSiO3 catalyst," Renewable Energy, Elsevier, vol. 209(C), pages 462-470.
    2. Zihao Zhang & Qiang Li & Xiangkun Wu & Claire Bourmaud & Dionisios G. Vlachos & Jeremy Luterbacher & Andras Bodi & Patrick Hemberger, 2024. "A solution for 4-propylguaiacol hydrodeoxygenation without ring saturation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Zharova, P.A. & Chistyakov, A.V. & Shapovalov, S.S. & Pasynskii, A.A. & Tsodikov, M.V., 2019. "Original Pt-Sn/Al2O3 catalyst for selective hydrodeoxygenation of vegetable oils," Energy, Elsevier, vol. 172(C), pages 18-25.
    4. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    5. Moreira, Rui & Bimbela, Fernando & Gandía, Luis M. & Ferreira, Abel & Sánchez, Jose Luis & Portugal, António, 2021. "Oxidative steam reforming of glycerol. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    6. Miao, Caixia & Zhou, Guilin & Chen, Shuang & Xie, Hongmei & Zhang, Xianming, 2020. "Synergistic effects between Cu and Ni species in NiCu/γ-Al2O3 catalysts for hydrodeoxygenation of methyl laurate," Renewable Energy, Elsevier, vol. 153(C), pages 1439-1454.
    7. Engin Kocaturk & Tufan Salan & Orhan Ozcelik & Mehmet Hakkı Alma & Zeki Candan, 2023. "Recent Advances in Lignin-Based Biofuel Production," Energies, MDPI, vol. 16(8), pages 1-17, April.
    8. Wu, Yankun & Duan, Jinyi & Li, Xingyong & Wu, KaiYue & Wang, Jiacheng & Zheng, Jie & Li, Shuirong & Wang, Dechao & Zheng, Zhifeng, 2023. "Synthesis of Ni/SAPO-11-X zeolites with graded secondary pore structure and its catalytic performance for hydrodeoxygenation-isomerization of FAME for green diesel production," Renewable Energy, Elsevier, vol. 218(C).
    9. Gollakota, Anjani R.K. & Shu, Chi-Min & Sarangi, Prakash Kumar & Shadangi, Krushna Prasad & Rakshit, Sudip & Kennedy, John F. & Gupta, Vijai Kumar & Sharma, Minaxi, 2023. "Catalytic hydrodeoxygenation of bio-oil and model compounds - Choice of catalysts, and mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    10. De-Chang Li & Zhengyi Pan & Zhengbin Tian & Qian Zhang & Xiaohui Deng & Heqing Jiang & Guang-Hui Wang, 2024. "Frustrated Lewis pair catalyst realizes efficient green diesel production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Ho, Calvin K. & McAuley, Kimberley B. & Peppley, Brant A., 2019. "Biolubricants through renewable hydrocarbons: A perspective for new opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Chetna Mohabeer & Nolven Guilhaume & Dorothée Laurenti & Yves Schuurman, 2022. "Microwave-Assisted Pyrolysis of Biomass with and without Use of Catalyst in a Fluidised Bed Reactor: A Review," Energies, MDPI, vol. 15(9), pages 1-22, April.
    13. Mohamed, Badr A. & Ruan, Roger & Bilal, Muhammad & Periyasamy, Selvakumar & Awasthi, Mukesh Kumar & Rajamohan, Natarajan & Leng, Lijian, 2024. "Sewage sludge co-pyrolysis with agricultural/forest residues: A comparative life-cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    14. Chen, Mingqiang & Li, Hong & Wang, Yishuang & Tang, Zhiyuan & Dai, Wei & Li, Chang & Yang, Zhonglian & Wang, Jun, 2023. "Lignin depolymerization for aromatic compounds over Ni-Ce/biochar catalyst under aqueous-phase glycerol," Applied Energy, Elsevier, vol. 332(C).
    15. George Petropoulos & John Zafeiropoulos & Eleana Kordouli & Alexis Lycourghiotis & Christos Kordulis & Kyriakos Bourikas, 2023. "Influence of Nickel Loading and the Synthesis Method on the Efficiency of Ni/TiO 2 Catalysts for Renewable Diesel Production," Energies, MDPI, vol. 16(11), pages 1-15, May.
    16. Tang, Hongbiao & Lin, Jiayu & Cao, Yang & Jibran, Khalil & Li, Jin, 2022. "Influence of NiMoP phase on hydrodeoxygenation pathways of jatropha oil," Energy, Elsevier, vol. 243(C).
    17. Alnarabiji, Mohamad Sahban & Tantawi, Omar & Ramli, Anita & Mohd Zabidi, Noor Asmawati & Ghanem, Ouahid Ben & Abdullah, Bawadi, 2019. "Comprehensive review of structured binary Ni-NiO catalyst: Synthesis, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:7:y:2022:i:9:p:133-:d:914886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.