Lignin depolymerization for aromatic compounds over Ni-Ce/biochar catalyst under aqueous-phase glycerol
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2022.120489
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yang, Zixu & Lei, Hanwu & Zhang, Yayun & Qian, Kezhen & Villota, Elmar & Qian, Moriko & Yadavalli, Gayatri & Sun, Hua, 2018. "Production of renewable alkyl-phenols from catalytic pyrolysis of Douglas fir sawdust over biomass-derived activated carbons," Applied Energy, Elsevier, vol. 220(C), pages 426-436.
- Li, Haowei & Ma, Hongwei & Zhao, Weijie & Li, Xuehui & Long, Jinxing, 2019. "Upgrading lignin bio-oil for oxygen-containing fuel production using Ni/MgO: Effect of the catalyst calcination temperature," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Kong, Xiangchen & Liu, Chao & Wang, Xing & Fan, Yuyang & Xu, Weicong & Xiao, Rui, 2022. "Production of oxygen-containing fuels via supercritical methanol hydrodeoxygenation of lignin bio-oil over Cu/CuZnAlOx catalyst," Applied Energy, Elsevier, vol. 316(C).
- Fan, Liangliang & Ruan, Roger & Li, Jun & Ma, Longlong & Wang, Chenguang & Zhou, Wenguang, 2020. "Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite," Applied Energy, Elsevier, vol. 263(C).
- Long, Jinxing & Shu, Riyang & Yuan, Zhengqiu & Wang, Tiejun & Xu, Ying & Zhang, Xinghua & Zhang, Qi & Ma, Longlong, 2015. "Efficient valorization of lignin depolymerization products in the present of NixMg1−xO," Applied Energy, Elsevier, vol. 157(C), pages 540-545.
- Ambursa, Murtala M. & Juan, Joon Ching & Yahaya, Y. & Taufiq-Yap, Y.H. & Lin, Yu-Chuan & Lee, Hwei Voon, 2021. "A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
- Rong, Siteng & Tan, Hongzi & Pang, Zhaobin & Zong, Zhiyuan & Zhao, Rongrong & Li, Zhihe & Chen, Zhe-Ning & Zhang, Ning-Ning & Yi, Weiming & Cui, Hongyou, 2022. "Synergetic effect between Pd clusters and oxygen vacancies in hierarchical Nb2O5 for lignin-derived phenol hydrodeoxygenation into benzene," Renewable Energy, Elsevier, vol. 187(C), pages 271-281.
- Umar, Yusuf & Velasco, Orlando & Abdelaziz, Omar Y. & Aboelazayem, Omar & Gadalla, Mamdouh A. & Hulteberg, Christian P. & Saha, Basudeb, 2022. "A renewable lignin-derived bio-oil for boosting the oxidation stability of biodiesel," Renewable Energy, Elsevier, vol. 182(C), pages 867-878.
- Zhang, Xinghua & Tang, Wenwu & Zhang, Qi & Wang, Tiejun & Ma, Longlong, 2018. "Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts," Applied Energy, Elsevier, vol. 227(C), pages 73-79.
- Li, Tan & Su, Jing & Wang, Huiyuan & Wang, Cong & Xie, Wen & Wang, Kaige, 2022. "Catalytic hydropyrolysis of lignin using NiMo-doped catalysts: Catalyst evaluation and mechanism analysis," Applied Energy, Elsevier, vol. 316(C).
- Mohcin Akri & Shu Zhao & Xiaoyu Li & Ketao Zang & Adam F. Lee & Mark A. Isaacs & Wei Xi & Yuvaraj Gangarajula & Jun Luo & Yujing Ren & Yi-Tao Cui & Lei Li & Yang Su & Xiaoli Pan & Wu Wen & Yang Pan & , 2019. "Atomically dispersed nickel as coke-resistant active sites for methane dry reforming," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Chang & Wang, Yishuang & Tang, Zhiyuan & Zhou, Zinan & Qin, Baolong & Chen, Mingqiang, 2023. "The bifunctional active sites on carbon supported Fe-Mo bimetallic catalyst to improve Kraft lignin liquefaction," Renewable Energy, Elsevier, vol. 219(P2).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zihao Zhang & Qiang Li & Xiangkun Wu & Claire Bourmaud & Dionisios G. Vlachos & Jeremy Luterbacher & Andras Bodi & Patrick Hemberger, 2024. "A solution for 4-propylguaiacol hydrodeoxygenation without ring saturation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Fan, Liangliang & Ruan, Roger & Li, Jun & Ma, Longlong & Wang, Chenguang & Zhou, Wenguang, 2020. "Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite," Applied Energy, Elsevier, vol. 263(C).
- Zhu, Yingbo & Ma, Yulong & Sun, Yonggang & Wang, Liqiong & Ding, Jie & Zhong, Yudan & Zhang, Juan & Wang, Lei & Li, Yuanyuan, 2023. "In-situ construction of N-doped hollow carbon polyhedral cage anchored Co-Ni dual binding sites as nanoreactor for efficient real lignin oil hydrodeoxygenation," Renewable Energy, Elsevier, vol. 217(C).
- Ouyang, Denghao & Wang, Fangqian & Hong, Jinpeng & Gao, Daihong & Zhao, Xuebing, 2021. "Ferricyanide and vanadyl (V) mediated electron transfer for converting lignin to electricity by liquid flow fuel cell with power density reaching 200 mW/cm2," Applied Energy, Elsevier, vol. 304(C).
- Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Yan, Shuo & Xia, Dehong & Zhang, Xinru & Liu, Xiangjun, 2022. "Synergistic mechanism of enhanced biocrude production during hydrothermal co-liquefaction of biomass model components: A molecular dynamics simulation," Energy, Elsevier, vol. 255(C).
- Hakimian, Hanie & Pyo, Sumin & Kim, Young-Min & Jae, Jungho & Show, Pau Loke & Rhee, Gwang Hoon & Chen, Wei-Hsin & Park, Young-Kwon, 2022. "Increased aromatics production by co-feeding waste oil sludge to the catalytic pyrolysis of cellulose," Energy, Elsevier, vol. 239(PD).
- Zhou, Xin & Yan, Hao & Sun, Zongzhuang & Feng, Xiang & Zhao, Hui & Liu, Yibin & Chen, Xiaobo & Yang, Chaohe, 2021. "Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment," Energy, Elsevier, vol. 237(C).
- Zhang, Xing & Wang, Kaige & Chen, Junhao & Zhu, Lingjun & Wang, Shurong, 2020. "Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt–Ni bimetal-based catalysts," Applied Energy, Elsevier, vol. 275(C).
- Yao, Qiuxiang & He, Lei & Ma, Duo & Wang, Linyang & Ma, Li & Chen, Huiyong & Hao, Qingqing & Sun, Ming, 2024. "Cracking of heavy-inferior oils with different alkane-aromatic ratios to aromatics over MFI zeolites:Structure-activity relationship derived by machine learning," Energy, Elsevier, vol. 289(C).
- Wang, Jia & Jiang, Jianchun & Li, Dongxian & Meng, Xianzhi & Zhan, Guowu & Wang, Yunpu & Zhang, Aihua & Sun, Yunjuan & Ruan, Roger & Ragauskas, Arthur J., 2022. "Creating values from wastes: Producing biofuels from waste cooking oil via a tandem vapor-phase hydrotreating process," Applied Energy, Elsevier, vol. 323(C).
- Yang, Deshi & Huang, Jianpeng & Hu, Zhipeng & Qin, Shiqi & Mu, Jiaxin & Wang, Fengqiang & Zhang, Zhijun & Xie, Yanjun & Liu, Shouxin & Wang, Qingwen, 2024. "Catalytic pyrolysis of lignin to aromatic hydrocarbons over Nb/Al oxide catalyst," Energy, Elsevier, vol. 302(C).
- Chen, Wei & Fang, Yang & Li, Kaixu & Chen, Zhiqun & Xia, Mingwei & Gong, Meng & Chen, Yingquan & Yang, Haiping & Tu, Xin & Chen, Hanping, 2020. "Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products," Applied Energy, Elsevier, vol. 260(C).
- Moreira, Rui & Bimbela, Fernando & Gandía, Luis M. & Ferreira, Abel & Sánchez, Jose Luis & Portugal, António, 2021. "Oxidative steam reforming of glycerol. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Xinyi Sun & Xiaowei Mu & Wei Zheng & Lei Wang & Sixie Yang & Chuanchao Sheng & Hui Pan & Wei Li & Cheng-Hui Li & Ping He & Haoshen Zhou, 2023. "Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Ke, Linyao & Wu, Qiuhao & Zhou, Nan & Xiong, Jianyun & Yang, Qi & Zhang, Letian & Wang, Yuanyuan & Dai, Leilei & Zou, Rongge & Liu, Yuhuan & Ruan, Roger & Wang, Yunpu, 2022. "Lignocellulosic biomass pyrolysis for aromatic hydrocarbons production: Pre and in-process enhancement methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
- Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
- Shenghua Wang & Dake Zhang & Wu Wang & Jun Zhong & Kai Feng & Zhiyi Wu & Boyu Du & Jiaqing He & Zhengwen Li & Le He & Wei Sun & Deren Yang & Geoffrey A. Ozin, 2022. "Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Luo, Juan & Ma, Rui & Huang, Xiaofei & Sun, Shichang & Wang, Hao, 2020. "Bio-fuels generation and the heat conversion mechanisms in different microwave pyrolysis modes of sludge," Applied Energy, Elsevier, vol. 266(C).
- Nils Kretzschmar & Markus Seifert & Oliver Busse & Jan J. Weigand, 2022. "Prediction of Retention Indices and Response Factors of Oxygenates for GC-FID by Multilinear Regression," Data, MDPI, vol. 7(9), pages 1-12, September.
More about this item
Keywords
Kraft lignin; Biochar; Bifunctional catalyst; Aqueous-phase glycerol medium; Guaiacol; β-O-4 model substance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:332:y:2023:i:c:s0306261922017469. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.