Forecasting Daily COVID-19 Case Counts Using Aggregate Mobility Statistics
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Nelson Mileu & Nuno M. Costa & Eduarda M. Costa & André Alves, 2022. "Mobility and Dissemination of COVID-19 in Portugal: Correlations and Estimates from Google’s Mobility Data," Data, MDPI, vol. 7(8), pages 1-17, July.
- Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Yun Li & Moming Li & Megan Rice & Haoyuan Zhang & Dexuan Sha & Mei Li & Yanfang Su & Chaowei Yang, 2021. "The Impact of Policy Measures on Human Mobility, COVID-19 Cases, and Mortality in the US: A Spatiotemporal Perspective," IJERPH, MDPI, vol. 18(3), pages 1-23, January.
- Sarkar, Kankan & Khajanchi, Subhas & Nieto, Juan J., 2020. "Modeling and forecasting the COVID-19 pandemic in India," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
- Fu, Xinjie & Wang, JinRong, 2024. "Dynamic behaviors and non-instantaneous impulsive vaccination of an SAIQR model on complex networks," Applied Mathematics and Computation, Elsevier, vol. 465(C).
- Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
- Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
- Sharma, Natasha & Verma, Atul Kumar & Gupta, Arvind Kumar, 2021. "Spatial network based model forecasting transmission and control of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
- Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Elena G. Popkova & Aleksei V. Bogoviz & Svetlana V. Lobova & Abdula M. Chililov & Anastasia A. Sozinova & Bruno S. Sergi, 2022. "Changing entrepreneurial attitudes for mitigating the global pandemic’s social drama," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
- Han, Lili & Song, Sha & Pan, Qiuhui & He, Mingfeng, 2023. "The impact of multiple population-wide testing and social distancing on the transmission of an infectious disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
- Samad Noeiaghdam & Sanda Micula & Juan J. Nieto, 2021. "A Novel Technique to Control the Accuracy of a Nonlinear Fractional Order Model of COVID-19: Application of the CESTAC Method and the CADNA Library," Mathematics, MDPI, vol. 9(12), pages 1-26, June.
- Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "Mathematical Modeling of Immune Responses against SARS-CoV-2 Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(19), pages 1-13, September.
- Ahumada, M. & Ledesma-Araujo, A. & Gordillo, L. & Marín, J.F., 2023. "Mutation and SARS-CoV-2 strain competition under vaccination in a modified SIR model," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
- Bandekar, Shraddha Ramdas & Ghosh, Mini, 2022. "A co-infection model on TB - COVID-19 with optimal control and sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 1-31.
- Lv, Yang & Lv, Zhiqiang & Cheng, Zesheng & Zhu, Zhanqi & Rashidi, Taha Hossein, 2023. "TS-STNN: Spatial-temporal neural network based on tree structure for traffic flow prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
- Alexander Leonov & Oleg Nagornov & Sergey Tyuflin, 2022. "Modeling of Mechanisms of Wave Formation for COVID-19 Epidemic," Mathematics, MDPI, vol. 11(1), pages 1-10, December.
- Zairu Nisha & Sachin Kumar & Saibal K. Pal & Jagvinder Singh & Ompal Singh, 2022. "Insights and reflections using data analytics approach of COVID-19 situation among the Indian states and ethical considerations," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 131-142, February.
- Kafieh, Rahele & Saeedizadeh, Narges & Arian, Roya & Amini, Zahra & Serej, Nasim Dadashi & Vaezi, Atefeh & Javanmard, Shaghayegh Haghjooy, 2020. "Isfahan and Covid-19: Deep spatiotemporal representation," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
- Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "An Extended SEIR Model with Vaccination for Forecasting the COVID-19 Pandemic in Saudi Arabia Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(6), pages 1-16, March.
- Zhang, Zhenzhen & Ma, Xia & Zhang, Yongxin & Sun, Guiquan & Zhang, Zi-Ke, 2023. "Identifying critical driving factors for human brucellosis in Inner Mongolia, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
- Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Ho, Andrew Fu Wah & Liu, Nan & Ong, Marcus Eng Hock & Cheong, Kang Hao, 2022. "A deep learning architecture for forecasting daily emergency department visits with acuity levels," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
More about this item
Keywords
COVID-19; forecasting; regression; applied machine learning; data science; time-series analysis; mobility;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:7:y:2022:i:11:p:166-:d:978450. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.